
ckanext-spatial Documentation
Release 2.1.0

Open Knowledge Foundation

Oct 31, 2023

CONTENTS

1 Installation and Setup 3
1.1 Install the extension . 3
1.2 Configuration . 4
1.3 Troubleshooting . 4

2 Spatial Search 7
2.1 Setup . 7
2.2 Geo-Indexing your datasets . 7
2.3 Spatial Search Widget . 11
2.4 Dataset Extent Map . 12

3 Spatial Harvesters 15
3.1 Overview and Configuration . 15
3.2 Customizing the harvesters . 16
3.3 Writing custom validators . 17
3.4 Harvest Metadata API . 19
3.5 Legacy harvesters . 20

4 CSW support 21
4.1 ckan-pycsw . 21

5 Previews for Spatial Formats 25

6 Common base layers for Map Widgets 27
6.1 Configuring the base layer . 27
6.2 For developers . 30

i

ii

ckanext-spatial Documentation, Release 2.1.0

This extension contains plugins that add geospatial capabilities to CKAN.

You should have a CKAN instance installed before adding these plugins. Head to the CKAN documentation for infor-
mation on how to set up CKAN.

The extension allows to perform spatial queries and display the dataset extent on the frontend. It also provides harvesters
to import geospatial metadata into CKAN from other sources, as well as commands to support the OGC CSW standard
via pycsw.

Contents:

CONTENTS 1

http://ckan.org
http://docs.ckan.org
http://pycsw.org

ckanext-spatial Documentation, Release 2.1.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION AND SETUP

Check the Troubleshooting section if you get errors at any stage.

Warning: If you are looking for the geospatial preview plugins to render (eg GeoJSON or WMS services), these
are now located in ckanext-geoview. They have a much simpler installation, so you can skip all the following steps
if you just want the previews.

All commands assume an existing CKAN database named ckan_default.

1.1 Install the extension

Note: The package names and paths shown are the defaults on Ubuntu installs. Adjust the package names and the
paths if you are using a different platform.

1. Install some packages needed by the extension dependencies:

sudo apt-get install python-dev libxml2-dev libxslt1-dev libgeos-c1

2. Activate your CKAN virtual environment, for example:

. /usr/lib/ckan/default/bin/activate

3. Install the ckanext-spatial Python package into your virtual environment:

pip install -e "git+https://github.com/ckan/ckanext-spatial.git#egg=ckanext-spatial"

4. Install the rest of Python modules required by the extension:

pip install -r /usr/lib/ckan/default/src/ckanext-spatial/requirements.txt

5. Restart CKAN. For example if you’ve deployed CKAN with Apache on Ubuntu:

sudo service apache2 reload

To use the Spatial Harvesters, you will need to install and configure the harvester extension: ckanext-harvest. Follow
the install instructions on its documentation for details on how to set it up.

3

https://github.com/ckan/ckanext-geoview
https://github.com/okfn/ckanext-harvest

ckanext-spatial Documentation, Release 2.1.0

1.2 Configuration

Add the following plugins to the ckan.plugins directive in the CKAN ini file:

ckan.plugins = spatial_metadata spatial_query

1.3 Troubleshooting

Here are some common problems you may find when installing or using the extension:

1.3.1 When upgrading the extension to a newer version

ckan.plugins.core.PluginNotFoundException: geojson_view

File "/home/pyenvs/spatial/src/ckan/ckan/plugins/core.py", line 149, in load
service = _get_service(plugin)

File "/home/pyenvs/spatial/src/ckan/ckan/plugins/core.py", line 256, in _get_service
raise PluginNotFoundException(plugin_name)
ckan.plugins.core.PluginNotFoundException: geojson_view

Your CKAN instance is using the geojson_view (or geojson_preview) plugin. This plugin has been moved from
ckanext-spatial to ckanext-geoview. Please install ckanext-geoview following the instructions on the README.

TemplateNotFound: Template dataviewer/geojson.html cannot be found

File '/home/pyenvs/spatial/src/ckan/ckan/lib/base.py', line 129 in render_template
template_path, template_type = render_.template_info(template_name)

File '/home/pyenvs/spatial/src/ckan/ckan/lib/render.py', line 51 in template_info
raise TemplateNotFound('Template %s cannot be found' % template_name)

TemplateNotFound: Template dataviewer/geojson.html cannot be found

See the issue above for details. Install ckanext-geoview and additionally run the following on the ckanext-spatial direc-
tory with your virtualenv activated:

python setup.py develop

ImportError: No module named nongeos_plugin

File "/home/pyenvs/spatial/src/ckan/ckan/plugins/core.py", line 255, in _get_service
return plugin.load()(name=plugin_name)

File "/home/pyenvs/spatial/local/lib/python2.7/site-packages/pkg_resources.py", line␣
→˓2147, in load
['__name__'])

ImportError: No module named nongeos_plugin

See the issue above for details. Install ckanext-geoview and additionally run the following on the ckanext-spatial direc-
tory with your virtualenv activated:

4 Chapter 1. Installation and Setup

https://github.com/ckan/ckanext-geoview
https://github.com/ckan/ckanext-geoview
https://github.com/ckan/ckanext-geoview

ckanext-spatial Documentation, Release 2.1.0

python setup.py develop

Plugin class ‘GeoJSONPreview’ does not implement an interface

File "/home/pyenvs/spatial/src/ckanext-spatial/ckanext/spatial/nongeos_plugin.py", line␣
→˓175, in <module>
class GeoJSONPreview(GeoJSONView):

File "/home/pyenvs/spatial/local/lib/python2.7/site-packages/pyutilib/component/core/
→˓core.py", line 732, in __new__
return PluginMeta.__new__(cls, name, bases, d)

File "/home/pyenvs/spatial/local/lib/python2.7/site-packages/pyutilib/component/core/
→˓core.py", line 659, in __new__
raise PluginError("Plugin class %r does not implement an interface, and it has already␣

→˓been defined in environment '%r'." % (str(name), PluginGlobals.env().name))
pyutilib.component.core.core.PluginError: Plugin class 'GeoJSONPreview' does not␣

→˓implement an interface, and it has already been defined in environment ''pca''

You have correctly installed ckanext-geoview but the ckanext-spatial source code is outdated, with references to the
view plugins previously part of this extension. Pull the latest version of the code and re-register the extension. With
the virtualenv CKAN is installed on activated, run:

git pull
python setup.py develop

1.3.2 When running the spatial harvesters

File "xmlschema.pxi", line 102, in lxml.etree.XMLSchema.__init__ (src/lxml/lxml.etree.
→˓c:154475)
lxml.etree.XMLSchemaParseError: local list type: A type, derived by list or union, must␣
→˓have the simple ur-type definition as base type, not '{http://www.opengis.net/gml}
→˓doubleList'., line 1

The XSD validation used by the spatial harvesters requires libxml2 version 2.9.

With CKAN you would probably have installed an older version from your distribution. (e.g. with sudo apt-get
install libxml2-dev). You need to find the SO files for the old version:

$ find /usr -name "libxml2.so"

For example, it may show it here: /usr/lib/x86_64-linux-gnu/libxml2.so. The directory of the SO file is used
as a parameter to the configure next on.

Download the libxml2 source:

$ cd ~
$ wget ftp://xmlsoft.org/libxml2/libxml2-2.9.0.tar.gz

Unzip it:

$ tar zxvf libxml2-2.9.0.tar.gz
$ cd libxml2-2.9.0/

1.3. Troubleshooting 5

https://github.com/ckan/ckanext-geoview

ckanext-spatial Documentation, Release 2.1.0

Configure with the SO directory you found before:

$./configure --libdir=/usr/lib/x86_64-linux-gnu

Now make it and install it:

$ make
$ sudo make install

Now check the install by running xmllint:

$ xmllint --version
xmllint: using libxml version 20900
compiled with: Threads Tree Output Push Reader Patterns Writer SAXv1 FTP HTTP DTDValid␣
→˓HTML Legacy C14N Catalog XPath XPointer XInclude Iconv ISO8859X Unicode Regexps␣
→˓Automata Expr Schemas Schematron Modules Debug Zlib

6 Chapter 1. Installation and Setup

CHAPTER

TWO

SPATIAL SEARCH

The spatial extension allows to index datasets with spatial information so they can be filtered via a spatial search query.
This includes both via the web interface (see the Spatial Search Widget) or via the action API, e.g.:

http://localhost:5000/api/action/package_search?q=Pollution&ext_bbox=-7.535093,49.208494,
→˓3.890688,57.372349

The ext_bbox parameter must be provided in the form ext_bbox={minx},{miny},{maxx},{maxy}

2.1 Setup

To enable the spatial search you need to add the spatial_query plugin to your ini file. This plugin in turn requires
the spatial_metadata plugin, eg:

ckan.plugins = ... spatial_metadata spatial_query

To define which backend to use for the spatial search use the following configuration option (see Choosing a backend
for the spatial search):

ckanext.spatial.search_backend = solr-bbox

2.2 Geo-Indexing your datasets

Regardless of the backend that you are using, in order to make a dataset searchable by location, it must have a the
location information (a geometry), indexed in Solr. You can provide this information in two ways.

2.2.1 The spatial extra field

The easiest way to get your geometries indexed is to use an extra field named spatial. The value of this extra should
be a valid GeoJSON geometry, for example:

{
"type":"Polygon",
"coordinates":[[[2.05827, 49.8625],[2.05827, 55.7447], [-6.41736, 55.7447], [-6.41736,␣

→˓49.8625], [2.05827, 49.8625]]]
}

or:

7

http://docs.ckan.org/en/latest/apiv3.html
http://geojson.org

ckanext-spatial Documentation, Release 2.1.0

{
"type": "Point",
"coordinates": [-3.145,53.078]

}

Every time a dataset is created, updated or deleted, the extension will index the information stored in the spatial in
Solr, so it can be reflected on spatial searches.

If you already have datasets when you enable Spatial Search then you’ll need to rebuild the search index.

2.2.2 Custom indexing logic

You might not want to use the spatial extra field. Perhaps you don’t want to store the geometries in the dataset
metadata but prefer to do so in a separate table, or you simply want to perform a different processing on the geometries
before indexing.

In this case you need to implement the before_dataset_index() method of the IPackageController interface:

def before_dataset_index(self, dataset_dict):

When using the default `solr-bbox` backend (based on bounding boxes), you need to
include the following fields in the returned dataset_dict:

dataset_dict["minx"] = minx
dataset_dict["maxx"] = maxx
dataset_dict["miny"] = miny
dataset_dict["maxy"] = maxy

When using the `solr-spatial-field` backend, you need to include the `spatial_geom`
field in the returned dataset_dict. This should be a valid geometry in WKT format.
Shapely can help you get the WKT representation of your gemetry if you have it in␣

→˓GeoJSON:

shape = shapely.geometry.shape(geometry)
wkt = shape.wkt

dataset_dict["spatial_geom"] = wkt

Don't forget to actually return the dict!

return dataset_dict

Some things to keep in mind:

• Remember, you only need to provide one field, either spatial_bbox or spatial_geom, depending on the
backend chosen.

• All indexed geometries should fall within the -180, -90, 180, 90 bounds. If you have polygons crossing the
antimeridian (i.e. with longituded lower than -180 or bigger than 180) you’ll have to split them across the an-
timeridian.

• Check the default implementation of before_dataset_index() in ckanext/spatial/plugins/__init__.py for ex-
tra useful checks and validations.

• If you want to store the geometry in the spatial field but don’t want to apply the default automatic indexing logic
applied by ckanext-spatial just remove the field from the dict (this won’t remove it from the dataset metadata, just

8 Chapter 2. Spatial Search

https://docs.ckan.org/en/latest/maintaining/cli.html?#search-index-rebuild-search-index
https://docs.ckan.org/en/latest/extensions/plugin-interfaces.html#ckan.plugins.interfaces.IPackageController.before_dataset_index
https://github.com/ckan/ckanext-spatial/blob/master/ckanext/spatial/plugin/__init__.py

ckanext-spatial Documentation, Release 2.1.0

from the indexed data):

def before_dataset_search(self, dataset_dict):

dataset_dict.pop("spatial", None)

return dataset_dict

2.2.3 Choosing a backend for the spatial search

Ckanext-spatial uses Solr to power the spatial search. The current implementation is tested on Solr 8, which is the
supported version, although it might work on previous Solr versions.

Note: The are official Docker images for Solr that have all the configuration needed to perform spatial searches (look
for the ones with a -spatial suffix). This is the easiest way to get started but if you need to customize Solr yourself
see below for the modifications needed.

There are different backends supported for the spatial search, it is important to understand their differences and the nec-
essary setup required when choosing which one to use. To configure the search backend use the following configuration
option:

ckanext.spatial.search_backend = solr-bbox | solr-spatial-field

The following table summarizes the different spatial search backends:

Backend Supported geometries indexed in Solr Solr setup needed
solr-bbox (default) Bounding Box, Polygon (extents only) Custom fields
solr-spatial-field Bounding Box, Point and Polygon Custom field + JTS

Note: The default solr-bbox search backend was previously known as solr. Please update your configuration if
using this version as it will be removed in the future.

The solr-bbox backend is probably a good starting point. Here are more details about the available options (again,
you don’t need to modify Solr if you are using one of the spatially enabled official Docker images):

• solr-bbox
This option always indexes just the extent of the provided geometries, whether if it’s an actual bounding
box or not. It supports spatial sorting of the returned results (based on the closeness of their bounding box
to the query bounding box). It uses standard Solr float fields so you just need to add the following to your
Solr schema:

<fields>
<!-- ... -->
<field name="minx" type="float" indexed="true" stored="true" />
<field name="maxx" type="float" indexed="true" stored="true" />
<field name="miny" type="float" indexed="true" stored="true" />
<field name="maxy" type="float" indexed="true" stored="true" />

</fields>

2.2. Geo-Indexing your datasets 9

https://github.com/ckan/ckan-solr

ckanext-spatial Documentation, Release 2.1.0

• solr-spatial-field
This option uses the RPT Solr field, which allows to index points, rectangles and more complex geometries
like polygons. This requires the install of the JTS library. See the linked Solr documentation for details on
this. Note that it does not support spatial sorting of the returned results. You will need to add the following
field type and field to your Solr schema file to enable it

<types>
<!-- ... -->
<fieldType name="location_rpt" class="solr.

→˓SpatialRecursivePrefixTreeFieldType"
spatialContextFactory="JTS"
autoIndex="true"
validationRule="repairBuffer0"
distErrPct="0.025"
maxDistErr="0.001"
distanceUnits="kilometers" />

</types>

<fields>
<!-- ... -->
<field name="spatial_geom" type="location_rpt" indexed="true" multiValued=

→˓"true" />
</fields>

By default, the solr-sptatial-field backend uses the following query. This can be customized by
setting the ckanext.spatial.solr_query configuration option, but note that all placeholders must be
included:

"{{!field f=spatial_geom}}Intersects(ENVELOPE({minx}, {maxx}, {maxy}, {miny}))"

Note: The old postgis search backend is no longer supported. You should migrate to one of the other backends
instead.

10 Chapter 2. Spatial Search

https://solr.apache.org/guide/8_11/spatial-search.html#rpt
https://github.com/locationtech/jts

ckanext-spatial Documentation, Release 2.1.0

2.3 Spatial Search Widget

The extension provides a snippet to add a map widget to the search form, which allows filtering results by an area of
interest.

To add the map widget to the sidebar of the search page, add the following block to the dataset search page tem-
plate (myproj/ckanext/myproj/templates/package/search.html). If your custom theme is simply extending
the CKAN default theme, you will need to add {% ckan_extends %} to the start of your custom search.html, then
continue with this:

{% block secondary_content %}

{% snippet "spatial/snippets/spatial_query.html" %}

{% endblock %}

By default the map widget will show the whole world. If you want to set up a different default extent, you can pass an
extra default_extent to the snippet, either with a pair of coordinates like this:

{% snippet "spatial/snippets/spatial_query.html", default_extent="[[15.62,
-139.21], [64.92, -61.87]]" %}

or with a GeoJSON object describing a bounding box (note the escaped quotes):

2.3. Spatial Search Widget 11

ckanext-spatial Documentation, Release 2.1.0

{% snippet "spatial/snippets/spatial_query.html", default_extent="{ \"type\":
\"Polygon\", \"coordinates\": [[[74.89, 29.39],[74.89, 38.45], [60.50,
38.45], [60.50, 29.39], [74.89, 29.39]]]}" %}

You need to load the spatial_metadata and spatial_query plugins to use this snippet.

2.4 Dataset Extent Map

Using the snippets provided, if datasets contain a spatial extra like the one described in the previous section, a map
will be shown on the dataset details page.

There are snippets already created to load the map on the left sidebar or in the main body of the dataset details page,
but these can be easily modified to suit your project needs

To add a map to the sidebar, add the following block to the dataset page template (eg ckanext-myproj/ckanext/
myproj/templates/package/read_base.html). If your custom theme is simply extending the CKAN default
theme, you will need to add {% ckan_extends %} to the start of your custom read.html, then continue with this:

{% block secondary_content %}
{{ super() }}

{% set dataset_extent = h.get_pkg_dict_extra(c.pkg_dict, 'spatial', '') %}
(continues on next page)

12 Chapter 2. Spatial Search

ckanext-spatial Documentation, Release 2.1.0

(continued from previous page)

{% if dataset_extent %}
{% snippet "spatial/snippets/dataset_map_sidebar.html", extent=dataset_extent %}

{% endif %}

{% endblock %}

For adding the map to the main body, add this to the main dataset page template (eg ckanext-myproj/ckanext/
myproj/templates/package/read.html):

{% block primary_content_inner %}

{{ super() }}

{% set dataset_extent = h.get_pkg_dict_extra(c.pkg_dict, 'spatial', '') %}
{% if dataset_extent %}

{% snippet "spatial/snippets/dataset_map.html", extent=dataset_extent %}
{% endif %}

{% endblock %}

You need to load the spatial_metadata plugin to use these snippets.

2.4. Dataset Extent Map 13

ckanext-spatial Documentation, Release 2.1.0

14 Chapter 2. Spatial Search

CHAPTER

THREE

SPATIAL HARVESTERS

3.1 Overview and Configuration

The spatial extension provides some harvesters for importing ISO19139-based metadata into CKAN, as well as provid-
ing a base class for writing new ones. The harvesters use the interface provided by ckanext-harvest, so you will need
to install and set it up first.

Once ckanext-harvest is installed, you can add the following plugins to your ini file to enable the different harvesters
(If you are upgrading from a previous version to CKAN 2.0 see legacy_harvesters):

• csw_harvester - CSW server

• waf_harvester - WAF (Web Accessible Folder): An online accessible index page with links to metadata doc-
uments

• doc_harvester - A single online accessible metadata document.

Have a look at the ckanext-harvest documentation if you want to have an overview of how the CKAN harvesters work,
but basically there are three separate stages:

• gather_stage - Aggregates all the remote identifiers for a particular source (eg identifiers for a CSW server, files
for a WAF).

• fetch_stage - Fetches all the remote documents and stores them on the database.

• import_stage - Performs all the processing for transforming the remote content into a CKAN dataset: validates
the document, parses it, converts it to a CKAN dataset dict and saves it in the database.

The extension provides different XSD and schematron based validators, and you can also write your own (see Writing
custom validators). You can specify which validators to use for the remote documents with the following configuration
option:

ckan.spatial.validator.profiles = iso19193eden

By default, the import stage will stop if the validation of the harvested document fails. This can be modified setting the
ckanext.spatial.harvest.continue_on_validation_errors to True. The setting can also be applied at the
source level setting to True the continue_on_validation_errors key on the source configuration object.

By default the harvesting actions (eg creating or updating datasets) will be performed by the internal site admin
user. This is the recommended setting, but if necessary, it can be overridden with the ckanext.spatial.harvest.
user_name config option, eg to support the old hardcoded ‘harvest’ user:

ckanext.spatial.harvest.user_name = harvest

When a document has not been updated remotely, the previous harvest object is replaced by the current one rather than
keeping it, to avoid cluttering the harvest_object table. This means that the harvest_object_id reference on the

15

https://github.com/okfn/ckanext-harvest
https://github.com/okfn/ckanext-harvest#the-harvesting-interface

ckanext-spatial Documentation, Release 2.1.0

linked dataset needs to be updated, by reindexing it. This will happen by default, but if you want to turn it off (eg if
you are doing separate reindexing) it can be turn off with the following option:

ckanext.spatial.harvest.reindex_unchanged = False

You can configure the single harvesters using a JSON object in the configuration form field. The currently supported
configuration options are:

• default_tags: A list of tags that will be added to all harvested datasets. Tags don’t need to previously exist.
This field takes a list of strings.

• default_extras: A dictionary of key value pairs that will be added to extras of the harvested datasets.

• override_extras: Assign default extras even if they already exist in the remote dataset. Default is False (only
non existing extras are added).

• clean_tags: By default, tags are not stripped of accent characters, spaces and capital letters for display. If
this option is set to True, accent characters will be replaced by their ascii equivalents, capital letters replaced by
lower-case ones, and spaces replaced with dashes. Setting this option to False gives the same effect as leaving it
unset.

• validator_profiles: A list of string that specifies a list of validators that will be applied to the current
harvester, overriding the global ones defined by the ‘ckan.spatial.validator.profiles’ option.

3.2 Customizing the harvesters

The default harvesters provided in this extension can be extended from extensions implementing the
ISpatialHarvester interface.

Probably the most useful extension point is get_package_dict, which allows to tweak the dataset fields before cre-
ating or updating it:

import ckan.plugins as p
from ckanext.spatial.interfaces import ISpatialHarvester

class MyPlugin(p.SingletonPlugin):

p.implements(ISpatialHarvester, inherit=True)

def get_package_dict(self, context, data_dict):

Check the reference below to see all that's included on data_dict

package_dict = data_dict['package_dict']
iso_values = data_dict['iso_values']

package_dict['extras'].append(
{'key': 'topic-category', 'value': iso_values.get('topic-category')}

)

package_dict['extras'].append(
{'key': 'my-custom-extra', 'value': 'my-custom-value'}

)

return package_dict

16 Chapter 3. Spatial Harvesters

ckanext-spatial Documentation, Release 2.1.0

get_validators allows to register custom validation classes that can be applied to the harvested documents. Check
the Writing custom validators section to know more about how to write your custom validators:

import ckan.plugins as p
from ckanext.spatial.interfaces import ISpatialHarvester
from ckanext.spatial.validation.validation import BaseValidator

class MyPlugin(p.SingletonPlugin):

p.implements(ISpatialHarvester, inherit=True)

def get_validators(self):
return [MyValidator]

class MyValidator(BaseValidator):

name = 'my-validator'

title= 'My very own validator'

@classmethod
def is_valid(cls, xml):

return True, []

transform_to_iso allows to hook into transformation mechanisms to transform other formats into ISO1939, the only
one directly supported by the spatial harvesters.

Here is the full reference for the provided extension points:

If you need to further customize the default behaviour of the harvesters, you can either extend CswHarvester,
WAFfHarverster or the main SpatialHarvester class., for instance to override the whole import_stage if the
default logic does not suit your needs.

The ckanext-geodatagov extension contains live examples on how to extend the default spatial harvesters and create
new ones for other spatial services like ArcGIS REST APIs.

3.3 Writing custom validators

Validator classes extend the BaseValidator class:

Helper classes are provided for XSD and schematron based validation, and completely custom logic can be also imple-
mented. Here are some examples of the most common types:

• XSD based validators:

class ISO19139NGDCSchema(XsdValidator):
'''
XSD based validation for ISO 19139 documents.

Uses XSD schema from the NOAA National Geophysical Data Center:

http://ngdc.noaa.gov/metadata/published/xsd/
(continues on next page)

3.3. Writing custom validators 17

https://github.com/okfn/ckanext-geodatagov/blob/master/ckanext/geodatagov/harvesters/

ckanext-spatial Documentation, Release 2.1.0

(continued from previous page)

'''
name = 'iso19139ngdc'
title = 'ISO19139 XSD Schema (NGDC)'

@classmethod
def is_valid(cls, xml):

xsd_path = 'xml/iso19139ngdc'

xsd_filepath = os.path.join(os.path.dirname(__file__),
xsd_path, 'schema.xsd')

return cls._is_valid(xml, xsd_filepath, 'NGDC Schema (schema.xsd)')

• Schematron validators:

class Gemini2Schematron(SchematronValidator):
name = 'gemini2'
title = 'GEMINI 2.1 Schematron 1.2'

@classmethod
def get_schematrons(cls):

with resource_stream("ckanext.spatial",
"validation/xml/gemini2/gemini2-schematron-20110906-v1.

→˓2.sch") as schema:
return [cls.schematron(schema)]

• Custom validators:

class MinimalFGDCValidator(BaseValidator):

name = 'fgdc_minimal'
title = 'FGDC Minimal Validation'

_elements = [
('Identification Citation Title', '/metadata/idinfo/citation/citeinfo/title

→˓'),
('Identification Citation Originator', '/metadata/idinfo/citation/citeinfo/

→˓origin'),
('Identification Citation Publication Date', '/metadata/idinfo/citation/

→˓citeinfo/pubdate'),
('Identification Description Abstract', '/metadata/idinfo/descript/abstract

→˓'),
('Identification Spatial Domain West Bounding Coordinate', '/metadata/

→˓idinfo/spdom/bounding/westbc'),
('Identification Spatial Domain East Bounding Coordinate', '/metadata/

→˓idinfo/spdom/bounding/eastbc'),
('Identification Spatial Domain North Bounding Coordinate', '/metadata/

→˓idinfo/spdom/bounding/northbc'),
('Identification Spatial Domain South Bounding Coordinate', '/metadata/

→˓idinfo/spdom/bounding/southbc'),
('Metadata Reference Information Contact Address Type', '/metadata/metainfo/

→˓metc/cntinfo/cntaddr/addrtype'),
(continues on next page)

18 Chapter 3. Spatial Harvesters

ckanext-spatial Documentation, Release 2.1.0

(continued from previous page)

('Metadata Reference Information Contact Address State', '/metadata/
→˓metainfo/metc/cntinfo/cntaddr/state'),

]

@classmethod
def is_valid(cls, xml):

errors = []

for title, xpath in cls._elements:
element = xml.xpath(xpath)
if len(element) == 0 or not element[0].text:

errors.append(('Element not found: {0}'.format(title), None))
if len(errors):

return False, errors

return True, []

The validation.py file included in the ckanext-spatial extension contains more examples of the different types.

Remember that after registering your own validators you must specify them on the following configuration option:

ckan.spatial.validator.profiles = iso19193eden,my-validator

3.4 Harvest Metadata API

This plugin allows to access the actual harvested document via API requests. It is enabled with the following plugin:

ckan.plugins = spatial_harvest_metadata_api

(It was previously known as inspire_api)

To view the harvest objects (containing the harvested metadata) in the web interface, these controller locations are
added:

• raw XML document: /harvest/object/{id}

• HTML representation: /harvest/object/{id}/html

Note: The old URLs are now deprecated and redirect to the previously mentioned:

• /api/2/rest/harvestobject/<id>/xml

• /api/2/rest/harvestobject/<id>/html

For those harvest objects that have an original document (which was transformed to ISO), this can be accessed via:

• raw XML document: /harvest/object/{id}/original

• HTML representation: /harvest/object/{id}/html/original

The HTML representation is created via an XSLT transformation. The extension provides an XSLT file that should
work on ISO 19139 based documents, but if you want to use your own on your extension, you can override it using the
following configuration options:

3.4. Harvest Metadata API 19

https://github.com/ckan/ckanext-spatial/blob/master/ckanext/spatial/validation/validation.py

ckanext-spatial Documentation, Release 2.1.0

ckanext.spatial.harvest.xslt_html_content = ckanext.myext:templates/xslt/custom.xslt
ckanext.spatial.harvest.xslt_html_content_original = ckanext.myext:templates/xslt/
→˓custom2.xslt

If your project does not transform different metadata types you can ignore the second option.

3.5 Legacy harvesters

Prior to CKAN 2.0, the spatial harvesters available on this extension were based on the GEMINI2 format, an ISO19139
profile used by the UK Location Programme, and the logic for creating or updating datasets and the resulting fields
were somehow adapted to the needs for this particular project. The harvesters were still generic enough and should
work fine with other ISO19139 based sources, but extra care has been put to make the new harvesters more generic and
robust, so these ones should only be used on existing instances:

• gemini_csw_harvester

• gemini_waf_harvester

• gemini_doc_harvester

If you are using these harvesters please consider upgrading to the new versions described on the previous section.

20 Chapter 3. Spatial Harvesters

CHAPTER

FOUR

CSW SUPPORT

The extension provides the support for the CSW standard, a specification from the Open Geospatial Consortium for
exposing geospatial catalogues over the web.

This support consists of:

• Ability to import records from CSW servers with the CSW harvester. See Spatial Harvesters for more details.

• Integration with pycsw to provide a fully compliant CSW interface for harvested records. This integration is
described in the following sections.

4.1 ckan-pycsw

The spatial extension offers the ckan-pycsw command, which allows to expose the spatial datasets harvested from
other sources in a CSW interface. This is powered by pycsw, which fully implements the OGC CSW specification.

4.1.1 How it works

The current implementation is based on CKAN and pycsw being loosely integrated via the CKAN API. pycsw will be
generally installed in the same server as CKAN (although it can also be run on a separate one), and the synchronization
command will be run regularly to keep the records on the pycsw repository up to date. This is done using the CKAN
API to get all the datasets identifiers (more precisely the ones from datasets that have been harvested) and then deciding
which ones need to be created, updated or deleted on the pycsw repository. For those that need to be created or updated,
the original harvested spatial document (ie ISO 19139) is requested from CKAN, and it is then imported using pycsw
internal functions:

Harvested
datasets

+
|
v

+--------+ +---------+
| | CKAN API | |
| CKAN | +------------> | pycsw | +------> CSW
| | | |
+--------+ +---------+

Remember, only datasets that were harvested with the Spatial Harvesters can currently be exposed via pycsw.

All necessary tasks are done with the ckan-pycsw command. To get more details of its usage, run the following:

21

http://www.opengeospatial.org/standards/cat
http://pycsw.org
http://pycsw.org

ckanext-spatial Documentation, Release 2.1.0

cd /usr/lib/ckan/default/src/ckanext-spatial
python bin/ckan_pycsw.py --help

4.1.2 Setup

1. Install pycsw. There are several options for this, depending on your server setup, check the pycsw documentation.

Note: CKAN integration requires least pycsw version 1.8.0. In general, use the latest stable version.

The following instructions assume that you have installed CKAN via a package install and should be run as root,
but the steps are the same if you are setting it up in another location:

cd /usr/lib/ckan/default/src
source ../bin/activate

From now on the virtualenv should be activated

git clone https://github.com/geopython/pycsw.git
cd pycsw
always use the latest stable version
git checkout 1.10.4
pip install -e .
python setup.py build
python setup.py install

2. Create a database for pycsw. In theory you can use the same database that CKAN is using, but if you want to
keep them separated, use the following command to create a new one (we’ll use the same default user though):

sudo -u postgres createdb -O ckan_default pycsw -E utf-8

It is strongly recommended that you install PostGIS in the pycsw database, so its spatial functions are used.

3. Configure pycsw. An example configuration file is included on the source:

cp default-sample.cfg default.cfg

To keep things tidy we will create a symlink to this file on the CKAN configuration directory:

ln -s /usr/lib/ckan/default/src/pycsw/default.cfg /etc/ckan/default/pycsw.cfg

Open the file with your favourite editor. The main settings you should tweak are server.home and repository.
database:

[server]
home=/usr/lib/ckan/default/src/pycsw
...
[repository]
database=postgresql://ckan_default:pass@localhost/pycsw

The rest of the options are described here.

4. Setup the pycsw table. This is done with the ckan-pycsw script (Remember to have the virtualenv activated
when running it):

22 Chapter 4. CSW support

http://docs.pycsw.org/en/latest/installation.html
http://docs.ckan.org/en/latest/install-from-package.html
http://docs.pycsw.org/en/latest/configuration.html

ckanext-spatial Documentation, Release 2.1.0

cd /usr/lib/ckan/default/src/ckanext-spatial
python bin/ckan_pycsw.py setup -p /etc/ckan/default/pycsw.cfg

At this point you should be ready to run pycsw with the wsgi script that it includes:

cd /usr/lib/ckan/default/src/pycsw
python csw.wsgi

This will run pycsw at http://localhost:8000. Visiting the following URL should return you the Capabilities file:

http://localhost:8000/?service=CSW&version=2.0.2&request=GetCapabilities

5. Load the CKAN datasets into pycsw. Again, we will use the ckan-pycsw command for this:

cd /usr/lib/ckan/default/src/ckanext-spatial
python bin/ckan_pycsw.py load -p /etc/ckan/default/pycsw.cfg

When the loading is finished, check that results are returned when visiting this link:

http://localhost:8000/?request=GetRecords&service=CSW&version=2.0.2&resultType=results&
outputSchema=http://www.isotc211.org/2005/gmd&typeNames=csw:Record&elementSetName=summary

The numberOfRecordsMatched should match the number of harvested datasets in CKAN (minus import er-
rors). If you run the command again new or udpated datasets will be synchronized and deleted datasets from
CKAN will be removed from pycsw as well.

4.1.3 Setting Service Metadata Keywords

The CSW standard allows for administrators to set CSW service metadata. These values can be set in the pycsw
configuration metadata:main section. If you would like the CSW service metadata keywords to be reflective of the
CKAN tags, run the following convenience command:

python ckan_pycsw.py set_keywords -p /etc/ckan/default/pycsw.cfg

Note that you must have privileges to write to the pycsw configuration file.

4.1.4 Running it on production site

On a production site you probably want to run the load command regularly to keep CKAN and pycsw in sync, and
serve pycsw with Apache + mod_wsgi like CKAN.

• To run the load command regularly you can set up a cron job. Type crontab -e and copy the following lines:

m h dom mon dow command
0 * * * * /var/lib/ckan/default/bin/python /var/lib/ckan/default/src/
→˓ckanext-spatial/bin/ckan_pycsw.py load -p /etc/ckan/default/pycsw.cfg

This particular example will run the load command every hour. You can of course modify this periodicity, for
instance reducing it for huge instances. This Wikipedia page has a good overview of the crontab syntax.

• To run pycsw under Apache check the pycsw installation documentation or follow these quick steps (they assume
the paths used in previous steps):

– Edit /etc/apache2/sites-available/ckan_default and add the following line just before the exist-
ing WSGIScriptAlias directive:

4.1. ckan-pycsw 23

http://localhost:8000
http://localhost:8000/?service=CSW&version=2.0.2&request=GetCapabilities
http://localhost:8000/?request=GetRecords&service=CSW&version=2.0.2&resultType=results&outputSchema=http://www.isotc211.org/2005/gmd&typeNames=csw:Record&elementSetName=summary
http://localhost:8000/?request=GetRecords&service=CSW&version=2.0.2&resultType=results&outputSchema=http://www.isotc211.org/2005/gmd&typeNames=csw:Record&elementSetName=summary
http://en.wikipedia.org/wiki/Cron#CRON_expression
http://docs.pycsw.org/en/latest/installation.html#running-on-wsgi

ckanext-spatial Documentation, Release 2.1.0

WSGIScriptAlias /csw /usr/lib/ckan/default/src/pycsw/csw.wsgi

– Edit the /usr/lib/ckan/default/src/pycsw/csw.wsgi file and add these two lines just after the im-
ports on the top of the file:

activate_this = os.path.join('/usr/lib/ckan/default/bin/activate_this.py')
execfile(activate_this, {"__file__":activate_this})

We need these to activate the virtualenv where we installed pycsw into.

– Restart Apache:

service apache2 restart

pycsw should be now accessible at http://localhost/csw

24 Chapter 4. CSW support

http://localhost/csw

CHAPTER

FIVE

PREVIEWS FOR SPATIAL FORMATS

Note: The view plugins for rendering spatial formats have been moved to ckanext-geoview, which contains view
plugins based on OpenLayers and Leaflet to display several geospatial files and services in CKAN.

25

https://github.com/ckan/ckanext-geoview
http://openlayers.org
http://leafletjs.org

ckanext-spatial Documentation, Release 2.1.0

26 Chapter 5. Previews for Spatial Formats

CHAPTER

SIX

COMMON BASE LAYERS FOR MAP WIDGETS

To provide a consistent look and feel and avoiding code duplication, the map widgets (at least the ones based on Leaflet)
can use a common function to create the map. The base layer that the map will use can be configured via configuration
options.

6.1 Configuring the base layer

The map widgets use the Leaflet-providers library to make easy to choose the base tile layer that the map widgets will
use. You can use any of the supported providers, which are listed in the preview page.

Note: As of October 2023, most if not all of the tile providers require at least some form of registration and / or
domain registering. They also have terms of use and will most likely require proper attribution (which should be
handled automatically for you when choosing a provider).

If you haven’t configured a map provider you will see the following notice in the map widgets:

27

http://leafletjs.com
https://github.com/leaflet-extras/leaflet-providers
http://leaflet-extras.github.io/leaflet-providers/preview/index.html

ckanext-spatial Documentation, Release 2.1.0

The main configuration option to manage the base layer used is ckanext.spatial.common_map.type. The value
of this setting should be one of the provider names supported by Leaflet-providers, e.g. Stadia.StamenTerrain,
Stadia, MapBox, Herev3.terrainDay, Esri.WorldImagery, USGS.USImagery etc. Note that these values are
case-sensitive.

Any additional configuration options required by Leaflet-providers should be set prefixed with ckanext.spatial.
common_map., for instance to configure the Stamen Terrain map that was used in previous versions of ckanext-spatial:

Stadia / Stamen Terrain
ckanext.spatial.common_map.type = Stadia.StamenTerrain
ckanext.spatial.common_map.apikey = <your_api_key>

To use MapBox tiles:

MapBox
ckanext.spatial.common_map.type = MapBox
ckanext.spatial.common_map.mapbox.id = <your_map_id>
ckanext.spatial.common_map.mapbox.accessToken = <your_access_token>

28 Chapter 6. Common base layers for Map Widgets

ckanext-spatial Documentation, Release 2.1.0

6.1.1 Custom layers

You can use any tileset that follows the XYZ convention using the custom type:

ckanext.spatial.common_map.type = custom

You will need to define the tileset URL using ckanext.spatial.common_map.custom_url. This follows the Leaflet
URL template format (ie {s} for subdomains if any, {z} for zoom and {x} {y} for tile coordinates). Additionally you can
use ckanext.spatial.common_map.subdomains and ckanext.spatial.common_map.attribution if needed
(this one will also work for Leaflet-provider layers if you want to tweak the default attribution).

For example:

ckanext.spatial.common_map.type = custom
ckanext.spatial.common_map.custom_url = https://basemap.nationalmap.gov/arcgis/rest/
→˓services/USGSImageryOnly/MapServer/tile/{z}/{y}/{x}
ckanext.spatial.common_map.attribution = Tiles courtesy of the <a href="https://usgs.gov/
→˓">U.S. Geological Survey

6.1.2 Old Stamen tiles

Previous versions of ckanext-spatial defaulted to using the Stamen terrain tiles as they not require registration. These
were deprecated and stopped working on October 2023. If you see this error displayed in your map widgets, you need
to configure an alternative provider using the methods described in the sections above:

6.1. Configuring the base layer 29

http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://leafletjs.com/reference.html#url-template
http://leafletjs.com/reference.html#url-template
http://maps.stamen.com/

ckanext-spatial Documentation, Release 2.1.0

6.2 For developers

To pass the base map configuration options to the relevant Javascript module that will initialize the map widget, use
the h.get_common_map_config() helper function. This is available when loading the spatial_metadata plugin.
If you don’t want to require this plugin, create a new helper function that points to it to avoid duplicating the names,
which CKAN won’t allow (see for instance how the GeoJSON preview plugin does it).

The function will return a dictionary with all configuration options that relate to the common base layer (that’s all that
start with ckanext.spatial.common_map.)

You will need to dump the dict as JSON on the data-module-map_config attribute (see for instance the
dataset_map_base.html and spatial_query.html snippets):

{% set map_config = h.get_common_map_config() %}
<div class="dataset-map" data-module="spatial-query" ... data-module-map_config="{{ h.
→˓dump_json(map_config) }}">
<div id="dataset-map-container"></div>

</div>

Once at the Javascript module level, all Leaflet based map widgets should use the ckan.commonLeafletMap con-
structor to initialize the map. It accepts the following parameters:

• container: HTML element or id of the map container

• mapConfig: (Optional) CKAN config related to the common base layer

• leafletMapOptions: (Optional) Options to pass to the Leaflet Map constructor

• leafletBaseLayerOptions: (Optional) Options to pass to the Leaflet TileLayer constructor

Most of the times you will want to do something like this for a sidebar map:

var map = ckan.commonLeafletMap('dataset-map-container', this.options.map_config,
→˓{attributionControl: false});

And this for a primary content map:

var map = ckan.commonLeafletMap('map', this.options.map_config);

30 Chapter 6. Common base layers for Map Widgets

	Installation and Setup
	Install the extension
	Configuration
	Troubleshooting
	When upgrading the extension to a newer version
	ckan.plugins.core.PluginNotFoundException: geojson_view
	TemplateNotFound: Template dataviewer/geojson.html cannot be found
	ImportError: No module named nongeos_plugin
	Plugin class ‘GeoJSONPreview’ does not implement an interface

	When running the spatial harvesters

	Spatial Search
	Setup
	Geo-Indexing your datasets
	The spatial extra field
	Custom indexing logic
	Choosing a backend for the spatial search

	Spatial Search Widget
	Dataset Extent Map

	Spatial Harvesters
	Overview and Configuration
	Customizing the harvesters
	Writing custom validators
	Harvest Metadata API
	Legacy harvesters

	CSW support
	ckan-pycsw
	How it works
	Setup
	Setting Service Metadata Keywords
	Running it on production site

	Previews for Spatial Formats
	Common base layers for Map Widgets
	Configuring the base layer
	Custom layers
	Old Stamen tiles

	For developers

