CKAN documentation
Release 2.11.0a0

CKAN contributors

Apr 30, 2024

CONTENTS

1 User guide 1
1.1 Whatis CKAN? e e 1
1.2 Using CKAN . . . o o e e 2
2 Sysadmin guide 17
2.1 Creating asysadmin account ot e e e 17
2.2 Customizing lookandfeel e 18
2.3 Managing organizations and datasetsl 19
2.4 Permanently deleting datasets, organizations and groups oL 20
2.5 Managin@ USeIS v v v v v e i e 20
3 Maintainer’s guide 23
3.1 CKANTEICASES « « v v v v v e e i e e e e e e e e e e e e e e e e 23
3.2 Installing CKAN . . . L . e e e e e e e 24
3.3 Upgrading CKAN 0 e 42
3.4 Getting started L. L L e e e e e e e e e e e e e e e 47
3.5 Database Management e e e e e e e e 48
3.6 Command Line Interface (CLI) et 50
3.7 Organizations and authorization L L e e e 61
3.8 Datapreview and visualization o L e 63
3.9 FileStore and fileuploads L e 75
3.10 DataStore extension Lol e e e e e e e e e e e e e e e e e 77
3.11 Table Designer eXtension o v v i it e e e e e e e e e e e e e e e e e e e 93
32 Apps&ddeas o e e e e e e e e e e 108
3.13 Tag Vocabularies L e e e e 108
3.14 FormIntegration e 109
3.15 Linked Dataand RDF 0. . o e 110
3.16 Backgroundjobs e 111
3.17 Email notifications e e e e 117
3.18 Page View Tracking 0 e e e e e 118
3.19 Multilingual Extension Lo e e e e e e e e 121
3.20 Stats EXtension e e e e e e e e e e 122
321 Configuration Options o it e e e e e e 123
4 API guide 179
4.1 Legacy APIs o e e 180
4.2 Makingan APIrequest e e e 185
4.3 Example: Importing datasets with the CKANAPI 186
4.4 APIVersions o e e e e 187
4.5 Authentication and APItokens L e e e 187

4.6 GET-able APIfunctions i i i e e e e e e e e e e e
477 JSONP SUPPOTE . o o v v o e
4.8 APLExamples o e e e e e e e e e e e
49 Action APIreference e e e e e e e e e
Extending guide

5.1 Writing extensions tutorial oL e
5.2 Using custom config settings in extensions L. oL oo
5.3 Making configuration options runtime-editable 0oL,
54 Testing eXtensions e e e e e e e
5.5 Best practices for writing eXtensions o i e e e e e e e e e e e e
5.6 Customizing dataset and resource metadata fields using [DatasetForm
5.7 Plugininterfacesreference oL L e
5.8 Plugins toolkitreference
5.9 Validator functions reference
5.10 Internationalizing strings in extensions oo
5.11 Migration from Pylonsto Flask
5.2 Signals e e e e e
5.13 Customizing the DataStore Data Dictionary Form
5.14 Customizing Table Designer Column Types and Constraints
Theming guide

6.1 Customizing CKAN’stemplateso e
6.2 Addingstaticfiles L
6.3 Customizing CKAN’SCSS e
6.4 Adding CSS and JavaScript files using Webassets oo oo
6.5 Customizing CKAN’s JavaScript e e e
6.6 Creating dynamic user interfaces withhtmxo L oo 0oL
6.7 Best practices for writing CKAN themes
6.8 Custom Jinja2 tagsreference e
6.9 Variables and functions available totemplates o Lo e
6.10 Objects and methods available to JavaScript modules
6.11 Template helper functions reference L L
6.12 Template snippets reference L
6.13 JavaScript sandbox reference oL e
6.14 JavaScript APIclientreference. e
6.15 CKAN jQuery pluginsreference e
Contributing guide

7.1 Reporting iSSUES . . . v v v v e i e
7.2 Translating CKAN L L e e e e e e
7.3 Testing CKAN e
7.4 Writing commit MESSAZES . . « . .« .t bt e
7.5 Makingapull request L e e e
7.6 Reviewing and merging apull requesto e e e e e e
7.7 Writing documentation oL e e e e e e e e e e e e e e
7.8 Projects for beginner CKAN developers
7.9 CKANcodearchitecture o v vttt e it e e e e e e e e e e e e
7.10 CSScoding standards e e e
7.11 HTML coding standards 0 o e e e e e
7.12 JavaScript coding standards L L e e e e e e e e e e
7.13 Pythoncoding standards e
7.14 String internationalization L. L L e e e e
7.15 Unicode handling e e

347
348
367
369
373
375
389
393
396
396
398
398
410
411
411
411

7.16 Testing coding standards L L e e e e e e e e e e e 470
7.17 Frontend development guidelines L e e e e 495
7.18 Database migrationso e e e e e e e e e e 521
7.19 Upgrading CKAN’sdependencies i 522
720 DoingaCKANTelease i i 523
Changelog 533
8.1 v.2.10.42024-03-13 o e e e e e 533
8.2 v.2.1032023-12-13 . . . e e e e 534
83 V2102 L L 535
8.4 v.2.10.1 2023-05-24 . . . L. e e e 535
8.5 v.2.10.0 2023-02-15 . . . L L e e e e e 537
8.6 v.2.0.112024-03-13 o e e e e 544
8.7 v.2.9.102023-12-13 e e e e 545
8.8 v.2.9.92023-05-24 e e 545
8.9 v.2.9.82023-02-15 L. e e e 546
8.10 v.2.9.72022-10-26 e e e e 546
.11 v.2.9.62022-09-28 L e e 547
8.12 v.2.9.52022-01-19 o e e e e 548
813 v.2.9.42021-09-22 e e 549
8.14 v.2.9.32021-05-19 L L e e 550
8.15 v.2.9.22021-02-10 L L L e e e e 551
8.16 v.2.9.12020-10-21 L . e e e 552
817 v.2.9.02020-08-05o e e e e e e 553
8.18 v.2.8.122022-10-26 e e e e e 557
8.19 v.2.8.112022-09-28 e e e e 557
8.20 v.2.8.102022-01-19 e e e 557
821 v.2.8.92021-09-22 L L e e e 558
8.22 v.2.8.82021-05-19 e e e e e 558
823 v.2.8.72021-02-10 o e e e e e e 558
824 v.2.8.6 2020-10-21 L e e e e 559
8.25 v.2.8.52020-08-05 e e e e 559
826 v.2.8.42020-04-15 L. e e 560
827 v.2.8.32019-07-03 e e 561
828 v.2.8.22018-12-12 e e e e e e 562
829 v.2.8.12018-07-25 o e e e 562
830 v.2.8.02018-05-09 e e 563
831 v.2.7.122021-09-22 . . . L e e e e e 566
832 v.2.7.112021-05-19 . . . o L e e 566
8.33 v.2.7.102021-02-10 o o e e e e e e 567
834 v.2.7.92020-10-21 e e e e 567
8.35 v.2.7.82020-08-05 e e e e 568
836 v.2.7.72020-04-15 L e e e 568
837 v.2.7.62019-07-03 e e 569
838 Vv2.7.52018-12-12 L e e 570
8.39 v2.7.42018-05-09 e e e 570
8.40 v2.7.32018-03-15 o e e 570
8.41 v2.7.22017-09-28 L e e e e 571
8.42 v2.7.12017-09-27 . . . o L e e e e e 571
8.43 v2.7.02017-08-02 L e e 572
8.44 v.2.6.92020-04-15o e e e 574
8.45 v.2.6.82019-07-03 e e e 575
8.46 v2.6.72018-12-12 L e e e e 575
8.47 v2.6.62018-05-00 L. e e 575

8.48 v2.6.52018-03-15 e e 576
8.49 v2.6.42017-09-27 e 576
850 v2.6.32017-08-02 e 576
851 v2.6.22017-03-22 L e 577
8.52 v2.6.12017-02-22 L 577
8.53 v2.6.02016-11-02 e e e e 578
8.54 v2.5.92018-05-09 580
8.55 v2.5.82018-03-15 o 580
856 Vv2.5.72017-09-27 e 581
857 v2.5.62017-08-02 L 581
8.58 v2.5.52017-03-22 581
8.59 v2.5.42017-02-22o e e 582
8.60 v2.5.32016-11-02 o e 582
8.61 v2.5.22016-03-31 e 583
8.62 Vv2.5.12015-12-17 o L e e 583
8.63 v2.5.02015-12-17 L e 584
8.64 v2.4.92017-09-27 o e e e 584
8.65 v2.4.82017-08-02 e e 585
8.66 v2.4.T72017-03-22 e 585
8.67 v2.4.62017-02-22 e 585
8.68 v2.4.52017-02-22 586
8.60 v2.4.42016-11-02 o e e e e 586
870 v2.4.32016-03-31 e e 586
871 v2.422015-12-17 o o o e 587
872 v2.4.12015-09-02 587
873 v2.4.02015-07-22 L e 587
874 v2.3.52016-11-02 o o e e e e e 589
875 v2.3.42016-03-31 e e 589
876 Vv2.3.3201I5-12-17 o e e e 589
877 v2.3.22015-09-02 e 590
878 v2.3.12015-07-22 e 590
879 v2.32015-03-04 590
8.80 v2.2.42015-12-17 o o e e e 596
8.81 v2.2.32015-07-22 o e e 596
8.82 v2.2.22015-03-04 597
8.83 v2.2.12014-10-15 o e 597
8.84 v2.22014-02-04 598
8.85 v2.1.6 2015-12-17 e 602
8.86 V2.1.52015-07-22 e e 602
8.87 v2.1.42015-03-04 602
8.88 Vv2.1.32014-10-15 o o e 602
8.89 v2.1.22014-02-04 603
890 Vv2.1.12013-11-8 o e 604
891 v2.12013-08-13 o e e e 604
8.92 v2.0.82015-12-17 o o e e e 606
893 v2.0.72015-07-22 e e 606
8.94 v2.0.62015-03-04 L e 606
8.95 v2.0.52014-10-15 L 607
8.96 v2.0.42014-02-04 e e 607
897 v2.0.3201I3-11-8 o e 607
8.98 v2.0.22013-08-13 o 608
8.99 v2.0.12013-06-11 o e 608
8.100 v2.02013-05-10 L e 609
8.101 v1.8.22013-08-13 e 611

8.102 v1.8.12013-05-10 o o e e e e 612

8.103 vI.8 2012-10-19 e e e 612
8.104 vI.7.4 2013-08-13 e e e e e 613
8.105 v1.7.32013-05-10 e e e 613
8.106 vI.7.2 2012-10-19 e e 613
8.107 vI.7.1 2012-06-20 e e e e e 614
8.108 vI.72012-05-09 e e e e e 614
8.109 vI.6 2012-02-24 e e e e e 615
8.110 vI.5.1 2012-01-04 o e e e e e e e 616
111 vI.52011-11-07 o e e e e e e e e 617
B.112 v1.4.3.12011-09-30 o e e e e 618
113 vI.4.32011-09-13 e e e e e 619
B.114 v1.4.22011-08-05 o e e e e e 619
B.115 vI.4A.12011-06-27 . . . o . o e e e e e e e e 620
B.116 v1.42011-05-19 e e e 620
B.117 v1.3.32011-04-08 o e e e e 621
B.118 vI.3.22011-03-15 e e e e e 621
B.119 vI.32011-02-18 e e e e 622
8.120 vI.2 2010-11-25 . . . o o e e e e e e 622
8.121 vI.12010-08-10 e e 623
8.122 v1.0.2 2010-08-27 e e e 623
8.123 v1.0.1 2010-06-23 e e e e e 623
8.124 vI.02010-05-11 o e e e e e e 624
8.125 vO.11 2010-01-25 o e e e e e e e 624
8.126 v0.10 2009-09-30 e e e e e e e 625
8.127 v0.9 2009-07-31 e e e 626
8.128 v0.8 2009-04-10 e e e e 626
8.129 v0.7 2008-10-31 o o e e e e e e 626
8.130 v0.6 2008-07-08 o e e e e e e 626
8.131 v0.52008-01-22 o e e e e e e e e 627
8.132 v0.4 2007-07-04 e e e 627
8.133 v0.32007-04-12 e e e 627
8.134 v0.22007-02 e e e 627
8.135 v0.12006-05 e e e e e 628
Python Module Index 629
Index 631

vi

CHAPTER
ONE

USER GUIDE

This user guide covers using CKAN’s web interface to organize, publish and find data. CKAN also has a powerful API
(machine interface), which makes it easy to develop extensions and links with other information systems. The API is
documented in API guide.

Some web UI features relating to site administration are available only to users with sysadmin status, and are docu-
mented in Sysadmin guide.

1.1 What is CKAN?

CKAN is a tool for making open data websites. (Think of a content management system like WordPress - but for data,
instead of pages and blog posts.) It helps you manage and publish collections of data. It is used by national and local
governments, research institutions, and other organizations who collect a lot of data.

Once your data is published, users can use its faceted search features to browse and find the data they need, and preview
it using maps, graphs and tables - whether they are developers, journalists, researchers, NGOs, citizens, or even your
own staff.

1.1.1 Datasets and resources

For CKAN purposes, data is published in units called “datasets”. A dataset is a parcel of data - for example, it could
be the crime statistics for a region, the spending figures for a government department, or temperature readings from
various weather stations. When users search for data, the search results they see will be individual datasets.

A dataset contains two things:

¢ Information or “metadata” about the data. For example, the title and publisher, date, what formats it is available
in, what license it is released under, etc.

¢ A number of “resources”, which hold the data itself. CKAN does not mind what format the data is in. A resource
can be a CSV or Excel spreadsheet, XML file, PDF document, image file, linked data in RDF format, etc. CKAN
can store the resource internally, or store it simply as a link, the resource itself being elsewhere on the web. A
dataset can contain any number of resources. For example, different resources might contain the data for different
years, or they might contain the same data in different formats.

Note: On early CKAN versions, datasets were called “packages” and this name has stuck in some places, specially
internally and on API calls. Package has exactly the same meaning as “dataset”.

CKAN documentation, Release 2.11.0a0

1.1.2 Users, organizations and authorization

CKAN users can register user accounts and log in. Normally (depending on the site setup), login is not needed to
search for and find data, but is needed for all publishing functions: datasets can be created, edited, etc by users with
the appropriate permissions.

Normally, each dataset is owned by an “organization”. A CKAN instance can have any number of organizations. For
example, if CKAN is being used as a data portal by a national government, the organizations might be different gov-
ernment departments, each of which publishes data. Each organization can have its own workflow and authorizations,
allowing it to manage its own publishing process.

An organization’s administrators can add individual users to it, with different roles depending on the level of autho-
rization needed. A user in an organization can create a dataset owned by that organization. In the default setup, this
dataset is initially private, and visible only to other users in the same organization. When it is ready for publication, it
can be published at the press of a button. This may require a higher authorization level within the organization.

Datasets cannot normally be created except within organizations. It is possible, however, to set up CKAN to allow
datasets not owned by any organization. Such datasets can be edited by any logged-in user, creating the possibility of
a wiki-like datahub.

Note: The user guide covers all the main features of the web user interface (UI). In practice, depending on how the
site is configured, some of these functions may be slightly different or unavailable. For example, in an official CKAN
instance in a production setting, the site administrator will probably have made it impossible for users to create new
organizations via the UL You can try out all the features described at http://demo.ckan.org.

1.2 Using CKAN

1.2.1 Registering and logging in

Note: Registration is needed for most publishing features and for personalization features, such as “following” datasets.
It is not needed to search for and download data.

To create a user ID, use the “Register” link at the top of any page. CKAN will ask for the following:

» Username — choose a username using only letters, numbers, - and _ characters. For example, “jbloggs” or
“joe_bloggs93”.

* Full name — to be displayed on your user profile
e E-mail address — this will not be visible to other users

* Password — enter the same password in both boxes

2 Chapter 1. User guide

http://demo.ckan.org

CKAN documentation, Release 2.11.0a0

E Register - CKAM

k4 ckan

/ Registration

Wiy Sign Up? =
e gemews | ¥EQiStEr fOr an Account

ol gaeiing things
Usemame: | dedcholl

Full Hame: | CalH Dedahen

Email; cosstoidicatiots oy

If there are problems with any of the fields, CKAN will tell you the problem and enable you to correct it. When the
fields are filled in correctly, CKAN will create your user account and automatically log you in.

Note: It is perfectly possible to have more than one user account attached to the same e-mail address. For this reason,
choose a username you will remember, as you will need it when logging in.

1.2.2 Features for publishers

Adding a new dataset

Note: You may need to be a member of an organization in order to add and edit datsets. See the section Creating
an organization below. On https://demo.ckan.org, you can add a dataset without being in an organization, but dataset
features relating to authorization and organizations will not be available.

Step 1. You can access CKAN’s “Create dataset” screen in two ways.

a) Select the “Datasets” link at the top of any page. From this, above the search box, select the “Add Dataset”
button.

b) Alternatively, select the “organizations” link at the top of a page. Now select the page for the organization that
should own your new dataset. Provided that you are a member of this organization, you can now select the “Add
Dataset” button above the search box.

Step 2. CKAN will ask for the following information about your data. (The actual data will be added in step 4.)

1.2. Using CKAN 3

https://demo.ckan.org

CKAN documentation, Release 2.11.0a0

* Title — this title will be unique across CKAN, so make it brief but specific. E.g. “UK population density by
region” is better than “Population figures”.

* Description — You can add a longer description of the dataset here, including information such as where the data
is from and any information that people will need to know when using the data.

* Tags — here you may add tags that will help people find the data and link it with other related data. Examples

could be “population”, “crime”, “East Anglia”. Hit the <return> key between tags. If you enter a tag wrongly,
you can use its delete button to remove it before saving the dataset.

* License — it is important to include license information so that people know how they can use the data. This field
should be a drop-down box. If you need to use a license not on the list, contact your site administrator.

* Organization - If you are a member of any organizations, this drop-down will enable you to choose which one
should own the dataset. Ensure the default chosen is the correct one before you proceed. (Probably most users
will be in only one organization. If this is you, CKAN will have chosen your organization by default and you
need not do anything.)

E Create dataset - CKAN

E C ka n L " 5 Aoout

[Datasets / Create Datasel ;

B What are dalasels?

Datasels are simply used 1o

group related pleces ol data.

These can then be lound Title:
undar A singhe el with &
degcripton and licandging
Irigrmation

UP Library catalogue
UAL: |datasel’ | up-librany-catlogues

Description: | Listod bocics held in Uppsr Pagwed Vikage Linray

Vi bt Moo Hevadiing hase
Tags: || x library || x Pagesl || « bibllography
License: | Crentve Commons Atibus... Iz £h

Organkmation: | pagwes-borough-councd

Imposiant: By subeniting cortent, Fou agred 10 HESAS O Pour
cortibulons ok the Upen Dulsbass Ucenss, | Cancel | [ETHECEETT

Note: By default, the only required field on this page is the title. However, it is good practice to include, at the
minimum, a short description and, if possible, the license information. You should ensure that you choose the correct
organization for the dataset, since at present, this cannot be changed later. You can edit or add to the other fields later.

Step 3. When you have filled in the information on this page, select the “Next: Add Data” button. (Alternatively select
“Cancel” to discard the information filled in.)

Step 4. CKAN will display the “Add data” screen.

4 Chapter 1. User guide

CKAN documentation, Release 2.11.0a0

E Add data to the dataset - CKAN

) ..5: -:Z-'-:-'H[.l:u;.-lu::'l. .ﬁ o @
E Ckﬁl‘l Datasets Oeganizations Groups About _

[Datasets / Create Datasel ;

B Whal's a réscurce?

A resource can be any fle or
finik 1o a Sle containing wseful

ot alinklonile Linkloan APl 5 Upioad a il

Resource: | hip:ipagwell.gov ukibranycatalogue.xmi

Hame: | Catslogue - XML

Description: | Soma usels

Viou can uts M larmsdting hase

Formal: | ami v

.
o

Previous Save & add another Mexl: Additianal Infe

This is where you will add one or more “resources” which contain the data for this dataset. Choose a file or link for
your data resource and select the appropriate choice at the top of the screen:

e If you are giving CKAN a link to the data, like http: //example.com/mydata.csv, then select “Link to a file”
or “Link to an API”. (If you don’t know what an API is, you don’t need to worry about this option - select “Link
to a file”.)

« If the data to be added to CKAN is in a file on your computer, select “Upload a file”. CKAN will give you a file
browser to select it.

Step 5. Add the other information on the page. CKAN does not require this information, but it is good practice to add
it:

* Name — a name for this resource, e.g. “Population density 2011, CSV”. Different resources in the dataset should
have different names.

* Description — a short description of the resource.
» Format — the file format of the resource, e.g. CSV (comma-separated values), XLS, JSON, PDF, etc.

Step 6. If you have more resources (files or links) to add to the dataset, select the “Save & add another” button. When
you have finished adding resources, select “Next: Additional Info”.

Step 7. CKAN displays the “Additional data” screen.

* Visibility — a Public dataset is public and can be seen by any user of the site. A Private dataset can only be
seen by members of the organization owning the dataset and will not show up in searches by other users.

* Author — The name of the person or organization responsible for producing the data.
* Author e-mail — an e-mail address for the author, to which queries about the data should be sent.

* Maintainer / maintainer e-mail — If necessary, details for a second person responsible for the data.

1.2. Using CKAN 5

CKAN documentation, Release 2.11.0a0

* Custom fields — If you want the dataset to have another field, you can add the field name and value here. E.g.
“Year of publication”. Note that if there is an extra field that is needed for a large number of datasets, you should
talk to your site administrator about changing the default schema and dataset forms.

E Add metadata to the dataset ...

b4 ckan

| Datasets / Create Dataset ;

B Whal are dalasels?

Datasels are simply used 1o
group refabed pleces of data.

ipimy: | Puns:
Thiese can then ba tsund Yy
undar & Singhe L vwith a
descripton and lizanging Auther: | Cal H Dedsholt
Irdcemalion

Author Bmall: | dedshosfbcatapultsoeg

Malntalmer: | Jos B

Maintalner Emall:

Custom Field: | Key: Valug:
Custom Field: | Key: Valug:
Custam Field: | Key: Valua:

— ..

Note: Everything on this screen is optional, but you should ensure the “Visibility” is set correctly. It is also good
practice to ensure an Author is named.

Changed in version 2.2: Previous versions of CKAN used to allow adding the dataset to existing groups in this step.
This was changed. To add a dataset to an existing group now, go to the “Group” tab in the Dataset’s page.

Step 8. Select the ‘Finish’ button. CKAN creates the dataset and shows you the result. You have finished!

You should be able to find your dataset by typing the title, or some relevant words from the description, into the search
box on any page in your CKAN instance. For more information about finding data, see the section Finding data.

Editing a dataset
You can edit the dataset you have created, or any dataset owned by an organization that you are a member of. (If a
dataset is not owned by any organization, then any registered user can edit it.)

1. Go to the dataset’s page. You can find it by entering the title in the search box on any page.

2. Select the “Edit” button, which you should see above the dataset title.

3. CKAN displays the “Edit dataset” screen. You can edit any of the fields (Title, Description, Dataset, etc), change
the visibility (Private/Public), and add or delete tags or custom fields. For details of these fields, see Adding a
new dataset.

4. When you have finished, select the “Update dataset” button to save your changes.

6 Chapter 1. User guide

CKAN documentation, Release 2.11.0a0

Etmn

:.‘.l Col H Opdtholt @ ©
E Ckal'l Dafasets Crgantrations Groups Abowt _

3 { Organizafiens / Pagwell Borough Council UP Library catalogue / Edit

dh Edit Dataset & View dainset

waycnins

Title: | UP Library catalogue
URAL: dema ckan sagidaiss sl IBrany-catalsgs | Ban

Descrigtions | Listof booics held in Upper Pagwel Yllage Library

Wena o ek LS Do b
Topsz || Pogwel ||« bilegraphy || » Bary

License: | Creadve Commons Afrbetl.. |- Fe
L1
Wisibilty: | Publc
Authar: | Cal H Dedahon

Aulhor Email; | dedohonicalapuls ong

Mainkaner: | Joo Boggs

Adding, deleting and editing resources

1. Go to the dataset’s “Edit dataset” page (steps 1-2 above).

2. In the left sidebar, there are options for editing resources. You can select an existing resource (to edit or delete
it), or select “Add new resource”.

3. You can edit the information about the resource or change the linked or uploaded file. For details, see steps 4-5
of “Adding a new resource”, above.

4. When you have finished editing, select the button marked “Update resource” (or “Add”, for a new resource) to
save your changes. Alternatively, to delete the resource, select the “Delete resource” button.

Deleting a dataset

1. Go to the dataset’s “Edit dataset” page (see “Editing a dataset”, above).

2. Select the “Delete” button.

3. CKAN displays a confirmation dialog box. To complete deletion of the dataset, select “Confirm”.

Note: The “Deleted” dataset is not completely deleted. It is hidden, so it does not show up in any searches, etc.
However, by visiting the URL for the dataset’s page, it can still be seen (by users with appropriate authorization), and
“undeleted” if necessary. If it is important to completely delete the dataset, contact your site administrator.

1.2. Using CKAN 7

CKAN documentation, Release 2.11.0a0

Creating an organization

In general, each dataset is owned by one organization. Each organization includes certain users, who can modify its
datasets and create new ones. Different levels of access privileges within an organization can be given to users, e.g.
some users might be able to edit datasets but not create new ones, or to create datasets but not publish them. Each
organization has a home page, where users can find some information about the organization and search within its
datasets. This allows different data publishing departments, bodies, etc to control their own publishing policies.

To create an organization:

1. Select the “Organizations” link at the top of any page.

2. Select the “Add Organization” button below the search box.
3. CKAN displays the “Create an Organization” page.
4

. Enter a name for the organization, and, optionally, a description and image URL for the organization’s home
page.

5. Select the “Create Organization” button. CKAN creates your organization and displays its home page. Initially,
of course, the organization has no datasets.

E Create an Organization - CKAN

ol HDedsholl & o

E Cka n -";'.r::-l:l _

/ Organizations / Create an Organization

O What are Organizations?
@ s

Cuganizalions act like

publishing departments for x &
dalases o exampl, e Create an Organization
Dapartmant of Haalth). Thia

means Tl dalasets chn D

publishad by and batong ko Thie: | Pagwel Borough Councll

department instead of an URL ; damo ckan argiomanizabionpagesll-Bomowegh-councll | Edit

Indmdual user,

Within Qeganizations, adming Descriphion: | Opar cain feom Grest Pagwell, Lille Pageell, Pagwel Magra, Pagweall Pana,
can assign roligs and Pagwell-on-S&a and Upper and Lower Pagaels,

authorisation its mambers,

ghing Individual users T right

8 pubdish datasets kom thal

paricular srganizabon (8.

Oiica of Malional SAaksea). Wioet e g Moo barmudting hees

Image UAL: | hip:rpagwell.gov.ukimagesbagwel jpg

Craals Organkration

Poworod by
S

You can now change the access privileges to the organization for other users - see Managing an organization below.
You can also create datasets owned by the organization; see Adding a new dataset above.

Note: Depending on how CKAN is set up, you may not be authorized to create new organizations. In this case, if you
need a new organization, you will need to contact your site administrator.

8 Chapter 1. User guide

CKAN documentation, Release 2.11.0a0

Managing an organization

When you create an organization, CKAN automatically makes you its “Admin”. From the organization’s page you
should see an “Admin” button above the search box. When you select this, CKAN displays the organization admin
page. This page has two tabs:

* Info—Here you can edit the information supplied when the organization was created (title, description and image).

* Members — Here you can add, remove and change access roles for different users in the organization. Note: you
will need to know their username on CKAN.

Emtmbtrs - Pagwell Borough C...

M Colk Deditol @ o

24 ckan s O o Y

- { Organizations / Pagwell Borough Council / Admin

O o | i Members & View crganization
User Rale
E Col H Dedabon Adi=in - n
Pagwell Borough i Pret P Brangatsen Wapsrig -~ [E8
Council
Opeen datn from Grest Pagwel,
LisTe Pagrsl, Pagwil Wagea, m
Pagel Panes, Pagwel-on-Sea
o Upper and Lower

Pagrenili, réad mivd

Povweered by

B ckan

By default CKAN allows members of organizations with three roles:

e Member — can see the organization’s private datasets
* Editor — can edit and publish datasets

* Admin — can add, remove and change roles for organization members

1.2.3 Finding data

Searching the site
To find datasets in CKAN, type any combination of search words (e.g. “health”, “transport”, etc) in the search box on
any page. CKAN displays the first page of results for your search. You can:

* View more pages of results

* Repeat the search, altering some terms

* Restrict the search to datasets with particular tags, data formats, etc using the filters in the left-hand column

1.2. Using CKAN 9

CKAN documentation, Release 2.11.0a0

If there are a large number of results, the filters can be very helpful, since you can combine filters, selectively adding
and removing them, and modify and repeat the search with existing filters still in place.

If datasets are tagged by geographical area, it is also possible to run CKAN with an extension which allows searching
and filtering of datasets by selecting an area on a map.

| search For 3 Dataset - CKAN

& -DATA cov T i

gy Rl HLOM.

HOALT. ABOUT - TIATA METRICS ~ ¥ g GOVERNMENT -~ BLOGS COAMMUNITIES ~

DATA CATALOG

/ Datasets Organirstions || Interactive Datasels n

et b 1 B Findietd Gerbvevand il Dt in's e Py, Heenlbdeudd pitid Bits (80 it Dopiend Blided,

ars enchanitund Ihe datn polcies. of participating entities: In crcher 53 bt wiliae
1obated malred o SeRishis Peve

hal ordy dWBeS Sirbid B9 Fedirsd

e, sl um clada pod

e ey

Ihads datidatd. A dédériplon ol Pl Citbiadg dnd ridrmaton dbdut Lhe

[Filter by locaklon

[Ertar tocation -
@ i 52 ~] 23 datasets found for "INVentions” oty | Asance H
; FJ- RPDI '1

°""r'-' R s DOE Patents Widget

Qe of Sedbasife and Teehnizal infarmaninn, Daoammant of Saangy — A seanchable cabacie of
pabenis resuling lom sponeored reassarch by the Depariment of Ersigry and predecassor agencies.

s i [
ankine Harwa
vaz :;-_-.-:n:-bv-“:a tydmestre s DOwpatents Data Service
3y Mgk
Ofice of Sclnilic and Teciknical infarmaiion, Deparimant of Bnargy — Conkaing bua-ra.pﬂ.:mlul
Dalazet Type i A paleris resulling om sponsored research by the D ol Enigry nd po -
Diefaul requesd retums finsk one._.
geaapatial (2
EBE
Show Mora Datasat Type
= T AVAILABLE TECHHOLOGIES
ot SR Depanmment of Agricalire = This leed provides readers with ik sy BbR ARKS 152 hrologi
mnevaton 3% retaing to bicbased producis, bictec hnolegy, crop production, tood salely & nuirSion,
imeeom R = =

Searching within an organization
If you want to look for data owned by a particular organization, you can search within that organization from its home
page in CKAN.
1. Select the “Organizations” link at the top of any page.
2. Select the organization you are interested in. CKAN will display your organization’s home page.
3. Type your search query in the main search box on the page.
CKAN will return search results as normal, but restricted to datasets from the organization.

If the organization is of interest, you can opt to be notified of changes to it (such as new datasets and modifications to
datasets) by using the “Follow” button on the organization page. See the section Managing your news feed below. You
must have a user account and be logged in to use this feature.

10 Chapter 1. User guide

CKAN documentation, Release 2.11.0a0

Exploring datasets

When you have found a dataset you are interested and selected it, CKAN will display the dataset page. This includes
* The name, description, and other information about the dataset

* Links to and brief descriptions of each of the resources

Datasets Organizations Groups About _

A / Organizations / WiFi Global BDA / Wifi hotspots

Wifi hotspots -
& Dataset % Groups @ Activity Stream

Followers

0 Wifi hotspots

WiFi access points, or hotspots, located in various municipal amenities and public access points in
Barcelona

Organization
= Data and Resources

“% WiFi hotspots
-) o - L 7 Explore ~
WiFi access points, or hotspots, located in various municipal amenities and...

Additional Info

WiFi Global BDA Field Value
to organize all wifi in open Author Ajuntament de Barcelona
data portals read more Maintainer Raquel Garrido
Last Updated January 23, 2017, 2:14 PM (UTC+01:00)
® Social Created January 23, 2017, 1:49 PM (UTC+01:00)
% Google+
© Tuiter 0 Comments CKAN £ Login
B Facebook ¥ Recommend [% Share Sort by Best
@ License . Start the discussion...
ol

The resource descriptions link to a dedicated page for each resource. This resource page includes information about
the resource, and enables it to be downloaded. Many types of resource can also be previewed directly on the resource
page. .CSV and .XLS spreadsheets are previewed in a grid view, with map and graph views also available if the data is
suitable. The resource page will also preview resources if they are common image types, PDF, or HTML.

The dataset page also has two other tabs:
* Activity stream — see the history of recent changes to the dataset
* Groups — see any group associated with this dataset.

If the dataset is of interest, you can opt to be notified of changes to it by using the “Follow” button on the dataset page.
See the section Managing your news feed below. You must have a user account and be logged in to use this feature.

1.2. Using CKAN 11

CKAN documentation, Release 2.11.0a0

1.2.4 Search in detail

CKAN supports two search modes, both are used from the same search field. If the search terms entered into the search

(7%1]

field contain no colon (“:”’) CKAN will perform a simple search. If the search expression does contain at least one

6,9

colon (“:”) CKAN will perform an advanced search.

Simple Search

CKAN defers most of the search to Solr and by default it uses the DisMax Query Parser that was primarily designed
to be easy to use and to accept almost any input without returning an error.

The search words typed by the user in the search box defines the main “query” constituting the essence of the search.
The + and - characters are treated as mandatory and prohibited modifiers for terms. Text wrapped in balanced quote
characters (for example, “San Jose”) is treated as a phrase. By default, all words or phrases specified by the user are
treated as optional unless they are preceded by a “+” or a “-*.

Note: CKAN will search for the complete word and when doing simple search are wildcards are not supported.

Simple search examples:
* census will search for all the datasets containing the word “census” in the query fields.

* census +2019 will search for all the datasets contaning the word “census” and filter only those matching also
“2019” as it is treated as mandatory.

* census -2019 will search for all the datasets containing the word “census” and will exclude “2019” from the
results as it is treated as prohibited.

» "european census" will search for all the datasets containing the phrase “european census”.

Solr applies some preprocessing and stemming when searching. Stemmers remove morphological affixes from words,
leaving only the word stem. This may cause, for example, that searching for “testing” or “tested” will show also results
containing the word “test”.

* Testing will search for all the datasets containing the word “Testing” and also “Test” as it is the stem of “Test-

. tL)

ing”.

@ 9

Note: If the Name of the dataset contains words separated by
search.

it will consider each word independently in the

Advanced Search

If the query has a colon in it it will be considered a fielded search and the query syntax of Solr will be used to search.
This will allow us to use wildcards “*”, proximity matching “~” and general features described in Solr docs. The basic
syntax is field: term.

Advanced Search Examples:
e title:european this will look for all the datasets containing in its title the word “european”.

e title:europ* this will look for all the datasets containing in its title a word that starts with “europ” like “europe”
and “european’.

e title:europe || title:africa will look for datasets containing “europe” or “africa” in its title.

12 Chapter 1. User guide

https://solr.apache.org/guide/8_11/the-dismax-query-parser.html

CKAN documentation, Release 2.11.0a0

e title: '"european census" ~ 4 A proximity search looks for terms that are within a specific distance from
one another. This example will look for datasets which title contains the words “european” and “census” within
a distance of 4 words.

¢ author:powell~ CKAN supports fuzzy searches based on the Levenshtein Distance, or Edit Distance algo-
rithm. To do a fuzzy search use the “~” symbol at the end of a single-word term. In this example words like
“jowell” or “pomell” will also be found.

Note: Field names used in advanced search may differ from Datasets Attributes, the mapping rules are defined in the
schema.xml file. You can use title to search by the dataset name and text to look in a catch-all field that includes
author, license, mantainer, tags, etc.

Note: CKAN uses Apache Solr as its search engine. For further details check the Solr documentation. Please note
that CKAN sometimes uses different values than what is mentioned in that documentation. Also note that not the
whole functionality is offered through the simplified search interface in CKAN or it can differ due to extensions or
local development in your CKAN instance.

1.2.5 Personalization

CKAN provides features to personalize the experience of both searching for and publishing data. You must be logged
in to use these features.

Managing your news feed

At the top of any page, select the dashboard symbol (next to your name). CKAN displays your News feed. This shows
changes to datasets that you follow, and any changed or new datasets in organizations that you follow. The number by
the dashboard symbol shows the number of new notifications in your News feed since you last looked at it. As well as
datasets and organizations, it is possible to follow individual users (to be notified of changes that they make to datasets).

1.2. Using CKAN 13

https://lucene.apache.org/solr/guide/6_6/searching.html#searching

CKAN documentation, Release 2.11.0a0

[Dashboard - craN

B rortnmneem & ¢ 0 @

M ckan Dutsses Organzatons Giops Abo
#/Dashboar
& My Datasets

1B teas Teed £ Semrgs

Aciary W Everything =

News feed iy from fems that you ¢

B ._':‘ ot H Dozl upcated the 4atasel U Library catalogod

@ l'g Gl H Dactakaon poided B foursd Casiogue - ML 10 the Saeasel UP Loy casiogus

B c. Gl H Dtz att croaioed iy dalied UIP Lite iy Cataig i

0 &

o fiif Prol P Bransstnem tgned 1p |

o ‘;‘ Gl H Dedakon diosed up

Prol P Dranestaem updated ther profie

If you want to stop following a dataset (or organization or user), go to the dataset’s page (e.g. by selecting a link to it
in your News feed) and select the “Unfollow” button.

Managing your user profile

You can change the information that CKAN holds about you, including what other users see about you by editing your
user profile. (Users are most likely to see your profile when you edit a dataset or upload data to an organization that
they are following.) To do this, select the gearwheel symbol at the top of any page.

14 Chapter 1. User guide

CKAN documentation, Release 2.11.0a0

E Dashboard - CRAN

“F'u:an'E::.r.3-5.|:'r.1.m i o o

b4 ckan

| Dashboard

B Account ko
IH Newsfeed £ Selings

¥our profile lets other CHAN
USETS know aboul who you ane .
and whal you de. Change your details

Username: | branestmem
Full name: | Prof P Erangstawm

Email: | branestaemddpagee|acu

Aboul: | Inveniar

¥ou & i Mishdoem lomiaftng hies

Change your password

Password:

CKAN displays the user settings page. Here you can change:
* Your full name
* Your e-mail address (note: this is not displayed to other users)
* Your profile text - an optional short paragraph about yourself
* Your password

Make the changes you require and then select the “Update Profile” button.

1.2. Using CKAN 15

CKAN documentation, Release 2.11.0a0

16 Chapter 1. User guide

CHAPTER
TWO

SYSADMIN GUIDE

This guide covers the administration features of CKAN 2.0, such as managing users and datasets. These features are
available via the web user interface to a user with sysadmin rights. The guide assumes familiarity with the User guide.

Certain administration tasks are not available through the web UI but need access to the server where CKAN is installed.
These include the range of configuration options using the site’s “config” file, documented in Configuration Options,
and those available via Command Line Interface (CLI).

Warning: A sysadmin user can access and edit any organizations, view and change user details, and permanently
delete datasets. You should carefully consider who has access to a sysadmin account on your CKAN system.

2.1 Creating a sysadmin account

Normally, a sysadmin account is created as part of the process of setting up CKAN. If one does not already exist, you
will need to create a sysadmin user, or give sysadmin rights to an existing user. To do this requires access to the server;
see Creating a sysadmin user for details. If another organization is hosting CKAN, you will need to ask them to create
a sysadmin user.

Adding more sysadmin accounts is done in the same way. It cannot be done via the web UL

17

CKAN documentation, Release 2.11.0a0

2.2 Customizing look and feel

Some simple customizations to customize the ‘look and feel’ of your CKAN site are available via the UI, at http://
<my-ckan-url>/ckan-admin/config/.

™| administration - CKAN Demo

¥ CEAM conlig opliona

* Syusdmrs & Coiig
Sy Ticha; Thin: iy thp i o

hin CEAEM Folarco B agpednm

Iy piaite foliel de. W St Edle Tllke! CREM Do

AN

Stpie: Croooe beom o ot of Bryber | Dl -
e v ralecd o P iidn

s g P W ey

quich: cumiom thare: sorking e Tag Lirsd: | Dedrd
5 Tag Losgoc This b e
Bagpln W b . T P
of ol o CHAN npisrad
. Aboufi |
Al Tre e el el o

whip CHAM inpiancan shoot

FagE

Belird Tl THE Mol el
ST T RN FELe
Fema page a2 & welcgeng
vishorh

Eappnin Gl Toak & & Dol
ol CIR5 Bk sppepe Ini
“haadr g ol ewery poge. Il
youl wigh i cumdomice e
Ierplidéd oo bally v
FalaFaVel] | BRI Tk
[T ST

5e Tap Logee | beaalmagss/chas-loas prg

P DR i B e g P

e TacS: Ty dl die'd ST0AN ity 18 | 0l vl Dbl B EB
LI EL T R e AR R B B R B R PR R A T
idadasaf] saarch poge whass yom can o By dape, groves and kormat, T add e
o Oladirigdd e | i iy WV Bedd i g fous o o | ared drddle Four
Dt [2 D P o A) T

Voma v g Warschoer. b g hama

Cumlomn TR ©

Here you can edit the following:

Site title
This title is used in the HTML <title> of pages served by CKAN (which may be displayed on your browser’s title
bar). For example if your site title is “CKAN Demo”, the home page is called “Welcome - CKAN Demo”. The
site title is also used in a few other places, e.g. in the alt-text of the main site logo.

Style

Choose one of five colour schemes for the default theme.
Site tag line

This is not used in CKAN’s current default themes, but may be used in future.
Site tag logo

A URL for the site logo, used at the head of every page of CKAN.

About
Text that appears on the “about” page, http://<my-ckan-url>/about. You can use Markdown here. If it is
left empty, a standard text describing CKAN will appear.

Intro text
This text appears prominently on the home page of your site.

Custom CSS
For simple style changes, you can add CSS code here which will be added to the <head> of every page.

18 Chapter 2. Sysadmin guide

http://daringfireball.net/projects/markdown/basics

CKAN documentation, Release 2.11.0a0

2.3 Managing organizations and datasets

A sysadmin user has full access to user accounts, organizations and datasets. For example, you have access to every
organization as if you were a member of that organization. Thus most management operations are done in exactly the
same way as in the normal web interface.

For example, to add or delete users to an organization, change a user’s role in the organization, delete the organization
or edit its description, etc, visit the organization’s home page. You will see the ‘Admin’ button as if you were a member
of the organization. You can use this to perform all organization admin functions. For details, see the User guide.

Similarly, to edit, update or delete a dataset, go to the dataset page and use the ‘Edit’ button. As an admin user you can
see all datasets including those that are private to an organization. They will show up when doing a dataset search.

2.3.1 Moving a dataset between organizations

To move a dataset between organizations, visit the dataset’s Edit page. Choose the appropriate entry from the “organi-
zation” drop-down list, and press “Save”.

k4 ckan

i EdE Datiist

H Edi Revsorcea Thhe: UP Libeary cataiogus
Clakaloeysy - ML UAL: dona. phoe, popiclsiasgbiug- Erarycalalogsy T
+ Add Mrm Aracurce Depcriprhan: izt Gk mgdd 1 Lapedy Pacaat ilods vy

§ i il o
rafmral vl fo -
DGt e T

Toros A ety |

Vil | Py =
Ay | ol H Dadihas

Authear Dngel; decpremdhrongin oig

¥ Find: | Frightind o presdous et Highlight all 1) MaLch cate

2.3. Managing organizations and datasets 19

CKAN documentation, Release 2.11.0a0

2.4 Permanently deleting datasets, organizations and groups

A dataset, organization or group which has been deleted is not permanently removed from CKAN; it is simply marked
as ‘deleted’” and will no longer show up in search, etc. The assigned URL cannot be re-used for a new entity.

To permanently delete (“purge”) an entity:
» Navigate to the dataset’s “Edit” page, and delete it.
e Visit http://<my-ckan-url>/ckan-admin/trash/.

This page shows all deleted datasets, organizations and groups and allows you to delete them permanently.

Warning: This operation cannot be reversed!

2.5 Managing users

To find a user’s profile, go to http://<my-ckan-url>/user/. You can search for users in the search box provided.

You can search by any part of the user profile, including their e-mail address. This is useful if, for example, a user has
forgotten their user ID. For non-sysadmin users, the search on this page will only match public parts of the profile, so
they cannot search by e-mail address.

On their user profile, you will see a “Manage” button. CKAN displays the user settings page. You can delete the user
or change any of its settings, including their name and password.

20 Chapter 2. Sysadmin guide

CKAN documentation, Release 2.11.0a0

¥ ckan Outssot Organizatons

[Usars / Col H Dedshott | Manage

B Account o

Fouar pralia o ooher CROAN

Changa datails

58 % rooa alband whao el

e gl mhal w,
lhemarme Sodehol
Fiuill s | Ceil H D sl

Erruill: | ot 0 i Catard ol % o

Aaat:

P a0 gl e s e B s B g

BUBSLNDE 10 P00 tmalls

Change password
Pia o

Caalwm
Pk d el

m P T m

New in version 2.2: Previous versions of CKAN didn’t allow you to delete users through the web interface.

2.5. Managing users 21

CKAN documentation, Release 2.11.0a0

22 Chapter 2. Sysadmin guide

CHAPTER
THREE

MAINTAINER’S GUIDE

The sections below document how to setup and maintain a CKAN site, including installing, upgrading and configuring
CKAN and its features and extensions.

3.1 CKAN releases

This document describes the different types of CKAN releases, and explains which releases are officially supported at
any given time.

Note: The currently supported CKAN version is CKAN 2.10.4
Security and performance fixes are also provided for CKAN 2.9.11.

Read more about officially supported versions

3.1.1 Release types

CKAN follows a predictable release cycle so that users can depend on stable releases of CKAN, and can plan their
upgrades to new releases.

Each release has a version number of the form M.m (eg. 2.1) or M.m.p (eg. 1.8.2), where M is the major version, m is
the minor version and p is the patch version number. There are three types of release:

Major Releases
Major releases, such as CKAN 1.0 and CKAN 2.0, increment the major version number. These releases contain
major changes in the CKAN code base, with significant refactorings and breaking changes, for instance in the
API or the templates. These releases are very infrequent.

Minor Releases
Minor releases, such as CKAN 2.9 and CKAN 2.10, increment the minor version number. These releases are
not as disruptive as major releases, but they may include some backwards-incompatible changes. The Changelog
will document any breaking changes. We aim to release a minor version of CKAN roughly twice a year.

Patch Releases
Patch releases, such as CKAN 2.9.5 or CKAN 2.10.1, increment the patch version number. These releases do not
break backwards-compatibility, they include only bug fixes for security and performance issues. Patch releases
do not contain:

* Database schema changes or migrations (unless addressing security issues)

 Solr schema changes

23

CKAN documentation, Release 2.11.0a0

 Function interface changes
* Plugin interface changes
* New dependencies (unless addressing security issues)

* Big refactorings or new features in critical parts of the code

Note: Outdated patch releases will no longer be supported after a newer patch release has been released. For example
once CKAN 2.9.2 has been released, CKAN 2.9.1 will no longer be supported.

Releases are announced on the ckan-announce mailing list, a low-volume list that CKAN instance maintainers can
subscribe to in order to be up to date with upcoming releases.

3.1.2 Supported versions
At any one time, the CKAN Tech Team will support the latest patch release of the last released minor version plus the
last patch release of the previous minor version.

The previous minor version will only receive security and bug fixes. If a patch does not clearly fit in these categories,
it is up to the maintainers to decide if it can be backported to a previous version.

The latest patch releases are the only ones officially supported. Users should always run the latest patch release for the
minor release they are on, as they contain important bug fixes and security updates. Running CKAN in an unsupported
version puts your site and data at risk.

Because patch releases don’t include backwards incompatible changes, the upgrade process (as described in Upgrading
a CKAN 2 package install to a new patch release) should be straightforward.

Extension maintainers can decide at their discretion to support older CKAN versions.
See also:

Changelog
The changelog lists all CKAN releases and the main changes introduced in each release.

Doing a CKAN release
Documentation of the process that the CKAN developers follow to do a CKAN release.

3.2 Installing CKAN

Note: The currently supported CKAN version is CKAN 2.10.4
Security and performance fixes are also provided for CKAN 2.9.11.

Read more about officially supported versions

CKAN 2.10 supports Python 3.7 to Python 3.10.

Before you can use CKAN on your own computer, you need to install it. There are three ways to install CKAN:
1. Install from an operating system package
2. Install from source
3. Install from Docker Compose

Additional deployment tips can be found in our wiki, such as the recommended Hardware Requirements.

24 Chapter 3. Maintainer’s guide

https://groups.google.com/a/ckan.org/g/ckan-announce
https://github.com/ckan/ckan/wiki/Hardware-Requirements

CKAN documentation, Release 2.11.0a0

3.2.1 Package install
Installing from package is the quickest and easiest way to install CKAN, but it requires Ubuntu 20.04 64-bit or Ubuntu
22.04 64-bit.
You should install CKAN from package if:
¢ You want to install CKAN on an Ubuntu 20.04 or 22.04, 64-bit server, and
* You only want to run one CKAN website per server

See Installing CKAN from package.

3.2.2 Source install

You should install CKAN from source if:
* You want to install CKAN on a 32-bit computer, or
¢ You want to install CKAN on a different version of Ubuntu, not 20.04 or 22.04, or
* You want to install CKAN on another operating system (eg. RHEL, CentOS, OS X), or
* You want to run multiple CKAN websites on the same server, or
* You want to install CKAN for development

See Installing CKAN from source.

3.2.3 Docker Compose install

The ckan-docker repository contains the necessary scripts and images to install CKAN using Docker Compose. It
provides a clean and quick way to deploy a standard CKAN instance pre-configured with the Filestore and DataStore
extension. It also allows the addition (and customization) of extensions. The emphasis leans more towards a Develop-
ment environment, however the base install can be used as the foundation for progressing to a Production environment.
Please note that a fully-fledged CKAN Production system using Docker containers is beyond the scope of the provided
setup.

You should install CKAN from Docker Compose if:
* You want to install CKAN with less effort than a source install and more flexibility than a package install, or
* You want to run or even develop extensions with the minimum setup effort, or
* You want to see whether and how CKAN, Docker and your respective infrastructure will fit together.
To install CKAN using Docker Compose, follow the links below:
* Configuration and setup files to run a CKAN site.
* Official Docker images for CKAN.

If you’ve already setup a CKAN website and want to upgrade it to a newer version of CKAN, see Upgrading CKAN .

3.2. Installing CKAN 25

https://github.com/ckan/ckan-docker
https://github.com/ckan/ckan-docker
https://github.com/ckan/ckan-docker-base

CKAN documentation, Release 2.11.0a0

Installing CKAN from package

This section describes how to install CKAN from package. This is the quickest and easiest way to install CKAN, but it
requires Ubuntu 20.04 or 22.04 64-bit. If you're not using any of these Ubuntu versions, or if you're installing CKAN
for development, you should follow /nstalling CKAN from source instead.

At the end of the installation process you will end up with two running web applications, CKAN itself and the Data-
Pusher, a separate service for automatically importing data to CKAN’s DataStore extension. Additionally, there will
be a process running the worker for running Background jobs. All these processes will be managed by Supervisor.

For Python 3 installations, the minimum Python version required is 3.9.

Host ports requirements:

Service Port Used for
NGINX 80 Proxy
uWSGI 8080 Web Server
uWSGI 8800 DataPusher
Solr 8983 Search
PostgreSQL 5432 Database
Redis 6379 Search

1. Install the CKAN package

On your Ubuntu system, open a terminal and run these commands to install CKAN:

1. Update Ubuntu’s package index:

Esudo apt update J

2. Install the Ubuntu packages that CKAN requires (and ‘git’, to enable you to install CKAN extensions):

[sudo apt install -y libpg5 redis-server nginx supervisor

3. Download the CKAN package:
* On Ubuntu 20.04:
wget https://packaging.ckan.org/python-ckan_2.10-focal_amd64.deb
* On Ubuntu 22.04:
wget https://packaging.ckan.org/python-ckan_2.10-jammy_amd64.deb
1. Install the CKAN package:
* On Ubuntu 20.04:
sudo dpkg -i python-ckan_2.10-focal_amd64.deb
* On Ubuntu 22.04:
sudo dpkg -i python-ckan_2.10-jammy_amd64.deb

26 Chapter 3. Maintainer’s guide

https://supervisord.org/

CKAN documentation, Release 2.11.0a0

2. Install and configure PostgreSQL

Tip: You can install PostgreSQL and CKAN on different servers. Just change the sqglalchemy.url setting in your
/etc/ckan/default/ckan.ini file to reference your PostgreSQL server.

Note: The commands mentioned below are tested in Ubuntu

orphan

Install PostgreSQL required packages:

[sudo apt install -y postgresql]

Note: If you are facing a problem in case postgresql is not running, execute the command sudo service
postgresql start

Check that PostgreSQL was installed correctly by listing the existing databases:

[sudo -u postgres psql -1 J

Check that the encoding of databases is UTF8, if not you might find issues later on with internationalisation. Since
changing the encoding of PostgreSQL may mean deleting existing databases, it is suggested that this is fixed before
continuing with the CKAN install.

Next you’ll need to create a database user if one doesn’t already exist. Create a new PostgreSQL user called
ckan_default, and enter a password for the user when prompted. You’ll need this password later:

sudo -u postgres createuser -S -D -R -P ckan_default
Create a new PostgreSQL database, called ckan_default, owned by the database user you just created:

sudo -u postgres createdb -0 ckan_default ckan_default -E utf-8

Note: If PostgreSQL is run on a separate server, you will need to edit postgresql.conf and pg_hba.conf. On Ubuntu,
these files are located in etc/postgresql/{ Postgres version}/main.

Uncomment the listen_addresses parameter and specify a comma-separated list of [P addresses of the network interfaces
PostgreSQL should listen on or “*’ to listen on all interfaces. For example,

listen_addresses = 'localhost,192.168.1.21"'

Add a line similar to the line below to the bottom of pg_hba.conf to allow the machine running the web server to
connect to PostgreSQL. Please change the IP address as desired according to your network settings.

host all all 192.168.1.22/32 md5

Edit the sglalchemy.url option in your CKAN configuration file (fetc/ckan/default/ckan.ini) file and set the correct pass-
word, database and database user.

3.2. Installing CKAN 27

CKAN documentation, Release 2.11.0a0

3. Install and configure Solr

Tip: You can install Solr and CKAN on different servers. Just change the solr_url setting in your
/etc/ckan/default/ckan.ini /etc/ckan/default/production.ini file to reference your Solr server.

orphan

CKAN uses Solr as its search engine, and uses a customized Solr schema file that takes into account CKAN’s specific
search needs. Now that we have CKAN installed, we need to install and configure Solr.

Warning: CKAN supports Solr 9 (recommended version) and Solr 8. Starting from CKAN 2.10 these are the
only Solr version supported. CKAN 2.9 can run with Solr 9 and 8 as long as it is patched to at least 2.9.5.

There are two supported ways to install Solr.

1. Using CKAN’s official Docker images. This is generally the easiest one and the recommended one if you are
developing CKAN locally

2. Installing Solr locally and configuring it with the CKAN schema. You can use this option if you can’t or don’t
want to use Docker.

Installing Solr using Docker

You will need to have Docker installed. Please refer to its installation documentation for details.

There are pre-configured Docker images for Solr for each CKAN version. Make sure to pick the image tag that matches
your CKAN version (they are named ckan/ckan-solr:<Major version>.<Minor version>). To start a local
Solr service you can run:

[docker run --name ckan-solr -p 8983:8983 -d ckan/ckan-solr:2.10-solr9 }

You can now jump to the Next steps section.

Installing Solr manually

The following instructions have been tested in Ubuntu 22.04 and are provided as a guidance only. For a Solr production
setup is it recommended that you follow the official Solr documentation.

1. Install the OS dependencies:

[sudo apt-get install openjdk-11-jdk J

2. Download the latest supported version from the Solr downloads page. CKAN supports Solr version 9.x (recom-
mended) and 8.x.

3. Extract the install script file to your desired location (adjust the Solr version number to the one you are using):

[tar xzf solr-9.2.1.tgz solr-9.2.1/bin/install_solr_service.sh --strip-components=2 J

4. Run the installation script as root:

28 Chapter 3. Maintainer’s guide

https://solr.apache.org/
https://www.docker.com/
https://docs.docker.com/engine/install/
https://solr.apache.org/guide/solr/latest/deployment-guide/taking-solr-to-production.html
https://solr.apache.org/downloads.html

CKAN documentation, Release 2.11.0a0

[sudo bash ./install_solr_service.sh solr-9.2.1.tgz

5. Check that Solr started running:

[sudo service solr status

6. Create a new core for CKAN:

[sudo -u solr /opt/solr/bin/solr create -c ckan

7. Replace the standard schema with the CKAN one:

sudo -u solr wget -0 /var/solr/data/ckan/conf/managed-schema https://raw.
—.githubusercontent.com/ckan/ckan/dev-v2.10/ckan/config/solr/schema.xml

8. Restart Solr:

[sudo service solr restart

Next steps with Solr

To check that Solr started you can visit the web interface at http://localhost:8983/solr

Warning: The two installation methods above will leave you with a setup that is fine for local development, but
Solr should never be exposed publicly in a production site. Pleaser refer to the Solr documentation to learn how to
secure your Solr instance.

If you followed any of the instructions above, the CKAN Solr core will be available at http://localhost:8983/solr/ckan.
If for whatever reason you ended up with a different one (eg with a different port, host or core name), you need to
change the solr_url setting in your CKAN configuration file (/etc/ckan/default/ckan.ini) to point to your Solr server, for
example:

[solr_urlzhttp ://my-solr-host:8080/solr/ckan-2.10

4. Set up a writable directory

CKAN needs a directory where it can write certain files, regardless of whether you are using the FileStore and file
uploads or not (if you do want to enable file uploads, set the ckan.storage_path configuration option in the next section).

1. Create the directory where CKAN will be able to write files:
sudo mkdir -p /var/lib/ckan/default

2. Set the permissions of this directory. For example if you’re running CKAN with Nginx, then the Nginx’s user
(www-data on Ubuntu) must have read, write and execute permissions on it:

sudo chown www-data /var/lib/ckan/default
sudo chmod u+rwx /var/lib/ckan/default

3.2. Installing CKAN 29

http://localhost:8983/solr
https://solr.apache.org/guide/securing-solr.html
http://localhost:8983/solr/ckan

CKAN documentation, Release 2.11.0a0

5. Update the configuration and initialize the database

1. Edit the CKAN configuration file (/etc/ckan/default/ckan.ini) to set up the following options:

site_id
Each CKAN site should have a unique site_id, for example:

[ckan. site_id = default }

site_url
Provide the site’s URL. For example:

[ckan.site_url = http://demo.ckan.org }

2. Initialize your CKAN database by running this command in a terminal:

[sudo ckan db init

3. Optionally, setup the DataStore and DataPusher by following the instructions in DataStore extension.

4. Also optionally, you can enable file uploads by following the instructions in FileStore and file uploads.

6. Start the Web Server and restart Nginx

Reload the Supervisor daemon so the new processes are picked up:

[sudo supervisorctl reload

After a few seconds run the following command to check the status of the processes:

[sudo supervisorctl status

You should see three processes running without errors:

ckan-datapusher:ckan-datapusher-00 RUNNING pid 1963, uptime 0:00:12
ckan-uwsgi : ckan-uwsgi-00 RUNNING pid 1964, uptime 0:00:12
ckan-worker:ckan-worker-00 RUNNING pid 1965, uptime 0:00:12

If some of the processes reports an error, make sure you’ve run all the previous steps and check the logs located in
/var/log/ckan for more details.

Restart Nginx by running this command:

[sudo service nginx restart

7. You’re done!

Open http://localhost in your web browser. You should see the CKAN front page, which will look something like this:

30 Chapter 3. Maintainer’s guide

http://localhost

CKAN documentation, Release 2.11.0a0

l Ckan Datasets Organizations Groups About

Welcome to CKAN

This is a nice introductory paragraph about CKAN or the site in
general. We don't have any copy to go here yet but soon we will

Search Your Data

| co—

= =

About CKAN CKAN API Powered by

Open Knowledge Foundation Ed ckan

You can now move on to Getting started to begin using and customizing your CKAN site.

Note: The default authorization settings on a new install are deliberately restrictive. Regular users won’t be able
to create datasets or organizations. You should check the Organizations and authorization documentation, configure
CKAN accordingly and grant other users the relevant permissions using the sysadmin account.

Note: There may be a PermissionError: [Errno 13] Permission denied: message when restarting super-
visor or accessing CKAN via a browser for the first time. This happens when a different user is used to execute the
web server process than the user who installed CKAN and the support software. A workaround would be to open up
the permissions on the /usr/1ib/ckan/default/src/ckan/ckan/public/base/i18n/ directory so that this user
could write the .js files into it. Accessing CKAN will generate these files for a new install, or you could run ckan -c
/etc/ckan/default/ckan.ini translation js to explicitly generate them.

Installing CKAN from source

CKAN is a Python application that requires three main services: PostgreSQL, Solr and Redis.

This section describes how to install CKAN from source. Although Installing CKAN from package is simpler, it requires
Ubuntu 20.04 64-bit or Ubuntu 22.04 64-bit. Installing CKAN from source works with other versions of Ubuntu and
with other operating systems (e.g. RedHat, Fedora, CentOS, OS X). If you install CKAN from source on your own
operating system, please share your experiences on our How to Install CKAN wiki page.

The minimum Python version required is 3.9

From source is also the right installation method for developers who want to work on CKAN.

3.2. Installing CKAN 31

https://github.com/ckan/ckan/wiki/How-to-Install-CKAN

CKAN documentation, Release 2.11.0a0

1. Install the required packages

If you’re using a Debian-based operating system (such as Ubuntu) install the required packages with this command:

sudo apt-get install python3-dev libpg-dev python3-pip python3-venv git-core redis-
—,server libmagicl

If you’re not using a Debian-based operating system, find the best way to install the following packages on your operating
system (see our How to Install CKAN wiki page for help):

Package Description

Python The Python programming language, v3.9 or newer
PostgreSQL The PostgreSQL database system, v10 or newer
libpq The C programmer’s interface to PostgreSQL

pip A tool for installing and managing Python packages
python3-venv The Python3 virtual environment builder (or for Python 2 use ‘virtualenv’ instead)
Git A distributed version control system

Apache Solr A search platform

Jetty An HTTP server (used for Solr).

Open]DK JDK The Java Development Kit (used by Jetty)

Redis An in-memory data structure store

2. Install CKAN into a Python virtual environment

Tip: If you're installing CKAN for development and want it to be installed in your home directory, you can symlink the
directories used in this documentation to your home directory. This way, you can copy-paste the example commands
from this documentation without having to modify them, and still have CKAN installed in your home directory:

mkdir -p ~/ckan/lib

sudo 1n -s ~/ckan/lib /usr/lib/ckan
mkdir -p ~/ckan/etc

sudo 1In -s ~/ckan/etc /etc/ckan

a. Create a Python virtual environment (virtualenv) to install CKAN into, and activate it:

sudo mkdir -p /usr/lib/ckan/default

sudo chown “whoami® /usr/lib/ckan/default
python3 -m venv /usr/lib/ckan/default

. /usr/lib/ckan/default/bin/activate

Important: The final command above activates your virtualenv. The virtualenv has to remain active for the rest of
the installation and deployment process, or commands will fail. You can tell when the virtualenv is active because its
name appears in front of your shell prompt, something like this:

[(default) $ _]

For example, if you logout and login again, or if you close your terminal window and open it again, your virtualenv
will no longer be activated. You can always reactivate the virtualenv with this command:

. /usr/lib/ckan/default/bin/activate

32 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckan/wiki/How-to-Install-CKAN
https://www.python.org/getit/
https://www.postgresql.org/docs/10/libpq.html
http://www.postgresql.org/docs/8.1/static/libpq.html
https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/latest/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://lucene.apache.org/solr/
https://www.eclipse.org/jetty/
https://openjdk.java.net/install/
https://redis.io/
https://virtualenv.pypa.io/en/latest/

CKAN documentation, Release 2.11.0a0

b. Install an up-to-date pip:

[pip install --upgrade pip J

c. Install the CKAN source code into your virtualenv.
To install the latest stable release of CKAN (CKAN 2.10.4), run:

pip install -e 'git+https://github.com/ckan/ckan.git@ckan-2.10.4
—#egg=ckan[requirements]'

If you’re installing CKAN for development, you may want to install the latest development version (the most
recent commit on the master branch of the CKAN git repository). In that case, run this command instead:

pip install -e 'git+https://github.com/ckan/ckan.git#egg=ckan[requirements,dev]'

Warning: The development version may contain bugs and should not be used for production websites! Only
install this version if you’re doing CKAN development.

d. Deactivate and reactivate your virtualenv, to make sure you’re using the virtualenv’s copies of commands like
ckan rather than any system-wide installed copies:

deactivate
. /usr/lib/ckan/default/bin/activate

3. Setup a PostgreSQL database

orphan

Install PostgreSQL required packages:

[sudo apt install -y postgresql]

Note: If you are facing a problem in case postgresql is not running, execute the command sudo service
postgresgl start

Check that PostgreSQL was installed correctly by listing the existing databases:

[sudo -u postgres psql -1]

Check that the encoding of databases is UTF8, if not you might find issues later on with internationalisation. Since
changing the encoding of PostgreSQL may mean deleting existing databases, it is suggested that this is fixed before
continuing with the CKAN install.

Next you’ll need to create a database user if one doesn’t already exist. Create a new PostgreSQL user called
ckan_default, and enter a password for the user when prompted. You’ll need this password later:

sudo -u postgres createuser -S -D -R -P ckan_default
Create a new PostgreSQL database, called ckan_default, owned by the database user you just created:

sudo -u postgres createdb -0 ckan_default ckan_default -E utf-8

Note: If PostgreSQL is run on a separate server, you will need to edit postgresql.conf and pg_hba.conf. On Ubuntu,
these files are located in etc/postgresql/{ Postgres version}/main.

3.2. Installing CKAN 33

CKAN documentation, Release 2.11.0a0

Uncomment the listen_addresses parameter and specify a comma-separated list of [P addresses of the network interfaces
PostgreSQL should listen on or “*’ to listen on all interfaces. For example,

listen_addresses = 'localhost,192.168.1.21"

Add a line similar to the line below to the bottom of pg_hba.conf to allow the machine running the web server to
connect to PostgreSQL. Please change the IP address as desired according to your network settings.

host all all 192.168.1.22/32 md5

4. Create a CKAN config file

Create a directory to contain the site’s config files:

sudo mkdir -p /etc/ckan/default
sudo chown -R “whoami® /etc/ckan/

Create the CKAN config file:
ckan generate config /etc/ckan/default/ckan.ini
Edit the ckan. ini file in a text editor, changing the following options:

sqlalchemy.url
This should refer to the database we created in 3. Setup a PostgreSQL database above:

sqlalchemy.url = postgresql://ckan_default:pass@localhost/ckan_default

Replace pass with the password that you created in 3. Setup a PostgreSQL database above.

Tip: If you're using a remote host with password authentication rather than SSL authentication, use:

sqlalchemy.url = postgresql://ckan_default:pass@<remotehost>/ckan_default?
—sslmode=disable

site_id
Each CKAN site should have a unique site_id, for example:

[ckan. site_id = default

site_url
Provide the site’s URL (used when putting links to the site into the FileStore, notification emails etc). For
example:

[ckan. site_url = http://demo.ckan.org

Do not add a trailing slash to the URL.

34 Chapter 3. Maintainer’s guide

mailto:pass@localhost/

CKAN documentation, Release 2.11.0a0

5. Setup Solr

orphan

CKAN uses Solr as its search engine, and uses a customized Solr schema file that takes into account CKAN’s specific
search needs. Now that we have CKAN installed, we need to install and configure Solr.

Warning: CKAN supports Solr 9 (recommended version) and Solr 8. Starting from CKAN 2.10 these are the
only Solr version supported. CKAN 2.9 can run with Solr 9 and 8 as long as it is patched to at least 2.9.5.

There are two supported ways to install Solr.

1. Using CKAN’s official Docker images. This is generally the easiest one and the recommended one if you are
developing CKAN locally

2. Installing Solr locally and configuring it with the CKAN schema. You can use this option if you can’t or don’t
want to use Docker.

Installing Solr using Docker

You will need to have Docker installed. Please refer to its installation documentation for details.

There are pre-configured Docker images for Solr for each CKAN version. Make sure to pick the image tag that matches
your CKAN version (they are named ckan/ckan-solr:<Major version>.<Minor version>). To start a local
Solr service you can run:

[docker run --name ckan-solr -p 8983:8983 -d ckan/ckan-solr:2.10-solr9 J

You can now jump to the Next steps section.

Installing Solr manually

The following instructions have been tested in Ubuntu 22.04 and are provided as a guidance only. For a Solr production
setup is it recommended that you follow the official Solr documentation.

1. Install the OS dependencies:

[sudo apt-get install openjdk-11-jdk]

2. Download the latest supported version from the Solr downloads page. CKAN supports Solr version 9.x (recom-
mended) and 8.x.

3. Extract the install script file to your desired location (adjust the Solr version number to the one you are using):

[tar xzf solr-9.2.1.tgz solr-9.2.1/bin/install_solr_service.sh --strip-components=2 J

4. Run the installation script as root:

[sudo bash ./install_solr_service.sh solr-9.2.1.tgz J

5. Check that Solr started running:

[sudo service solr status]

3.2. Installing CKAN 35

https://solr.apache.org/
https://www.docker.com/
https://docs.docker.com/engine/install/
https://solr.apache.org/guide/solr/latest/deployment-guide/taking-solr-to-production.html
https://solr.apache.org/downloads.html

CKAN documentation, Release 2.11.0a0

6. Create a new core for CKAN:

[sudo -u solr /opt/solr/bin/solr create -c ckan

7. Replace the standard schema with the CKAN one:

sudo -u solr wget -0 /var/solr/data/ckan/conf/managed-schema https://raw.
—.githubusercontent.com/ckan/ckan/dev-v2.10/ckan/config/solr/schema.xml

8. Restart Solr:

[sudo service solr restart

Next steps with Solr

To check that Solr started you can visit the web interface at http://localhost:8983/solr

Warning: The two installation methods above will leave you with a setup that is fine for local development, but
Solr should never be exposed publicly in a production site. Pleaser refer to the Solr documentation to learn how to
secure your Solr instance.

If you followed any of the instructions above, the CKAN Solr core will be available at http://localhost:8983/solr/ckan.
If for whatever reason you ended up with a different one (eg with a different port, host or core name), you need to
change the solr_url setting in your CKAN configuration file (/etc/ckan/default/ckan.ini) to point to your Solr server, for
example:

[solr_urlzhttp ://my-solr-host:8080/solr/ckan-2.10

6. Setup Redis

If you installed it locally on the first step, make sure you have a Redis instance running in the 6379 port.

If you have Docker installed, you can setup a default Redis instance by running:

[docker run --name ckan-redis -p 6379:6379 -d redis

7. Create database tables

Now that you have a configuration file that has the correct settings for your database, you can create the database tables:

cd /usr/lib/ckan/default/src/ckan
ckan -c /etc/ckan/default/ckan.ini db init

You should see Initialising DB: SUCCESS.

Tip: If the command prompts for a password it is likely you haven’t set up the sqlalchemy.url option in your CKAN
configuration file properly. See 4. Create a CKAN config file.

36 Chapter 3. Maintainer’s guide

http://localhost:8983/solr
https://solr.apache.org/guide/securing-solr.html
http://localhost:8983/solr/ckan

CKAN documentation, Release 2.11.0a0

8. Set up the DataStore

Note: Setting up the DataStore is optional. However, if you do skip this step, the DataStore features will not be
available and the DataStore tests will fail.

Follow the instructions in DataStore extension to create the required databases and users, set the right permissions and
set the appropriate values in your CKAN config file.

Once you have set up the DataStore, you may then wish to configure either the DataPusher or XLoader extensions to
add data to the DataStore. To install DataPusher refer to this link: https://github.com/ckan/datapusher and to install
XLoader refer to this link: https://github.com/ckan/ckanext-xloader

9. Create CKAN user

To create, remove, list and manage users, you can follow the steps at Create and Manage Users.

10. You’re done!

You can now run CKAN from the command-line. This is a simple and lightweight way to serve CKAN that is useful
for development and testing:

cd /usr/lib/ckan/default/src/ckan
ckan -c /etc/ckan/default/ckan.ini run

Open http://127.0.0.1:5000/ in a web browser, and you should see the CKAN front page.
Now that you’ve installed CKAN, you should:
* Run CKAN’s tests to make sure that everything’s working, see 7esting CKAN .

* If you want to use your CKAN site as a production site, not just for testing or development purposes, then deploy
CKAN using a production web server such as uWSGI or Nginx. See Deploying a source install.

* Begin using and customizing your site, see Getting started.

Note: The default authorization settings on a new install are deliberately restrictive. Regular users won’t be able
to create datasets or organizations. You should check the Organizations and authorization documentation, configure
CKAN accordingly and grant other users the relevant permissions using the sysadmin account.

Source install troubleshooting
Solr setup troubleshooting

Solr requests and errors are logged in the web server log files.

* For Jetty servers, the log files are:

[/var/log/jetty/<date> .stderrout.log

* For Tomcat servers, they’re:

3.2. Installing CKAN 37

https://github.com/ckan/datapusher
https://github.com/ckan/ckanext-xloader
https://docs.ckan.org/en/latest/maintaining/cli.html#user-create-and-manage-users
http://127.0.0.1:5000/

CKAN documentation, Release 2.11.0a0

[/var/log/tomcatG/catalina.<date>.1og J

AttributeError: ‘module’ object has no attribute ‘css/main.debug.css’

This error is likely to show up when debug is set to True. To fix this error, install frontend dependencies. See Frontend
development guidelines.

After installing the dependencies, run npm run build and then start ckan server again.

If you do not want to compile CSS, you can also copy the main.css to main.debug.css to get CKAN running:

/usr/lib/ckan/default/src/ckan/ckan/public/base/css/main.debug.css

cp /usr/lib/ckan/default/src/ckan/ckan/public/base/css/main.css \ ’

ImportError: No module named ‘flask_debugtoolbar’

This may show up if you have enabled debug mode in the config file. Simply install the development requirements:

[pip install -r /usr/lib/ckan/default/src/ckan/dev-requirements.txt]

Deploying a source install
Once you’ve installed CKAN from source by following the instructions in /nstalling CKAN from source, you can follow
these instructions to deploy your CKAN site using a rudimentary web server, so that it’s available to the Internet.

Because CKAN uses WSGI, a standard interface between web servers and Python web applications, CKAN can be used
with a number of different web server and deployment configurations, however the CKAN project has now standardized
on one NGINX with uwsgi

This guide explains how to deploy CKAN using a uwsgi web server and proxied with NGINX on an Ubuntu server.
These instructions have been tested on Ubuntu 18.04.

1. Install Nginx

Install NGINX (a web server) which will proxy the content from one of the WSGI Servers and add a layer of caching:

[sudo apt-get install nginx J

2. Create the WSGI script file

The WSGI script file can be copied from the CKAN distribution: sudo cp /usr/lib/ckan/default/src/ckan/
wsgi.py /etc/ckan/default/

Here is the file:
-- coding: utf-8 --
import os

from ckan.config.middleware import make_app
from ckan.cli import CKANConfigLoader

38 Chapter 3. Maintainer’s guide

http://nginx.org/
http://nginx.org/

CKAN documentation, Release 2.11.0a0

from logging.config import fileConfig as loggingFileConfig

config_filepath = os.path.join(
os.path.dirname(os.path.abspath(__file__)), 'ckan.ini')

abspath = os.path.join(os.path.dirname(os.path.abspath(__file__)))

loggingFileConfig(config_filepath)

config = CKANConfigLoader(config_filepath).get_config()

application = make_app(config)

The WSGI Server (configured next) will redirect requests to this WSGI script file. The script file then handles those
requests by directing them on to your CKAN instance (after first configuring the Python environment for CKAN to run
in).

3. Create the WSGI Server

Make sure you have activated the Python virtual environment before running this command:

. /usr/lib/ckan/default/bin/activate

uwsgi

Run pip install uwsgi The uwsgi configuration file can be copied from the CKAN distribution: sudo cp /usr/
lib/ckan/default/src/ckan/ckan-uwsgi.ini /etc/ckan/default/

Here is the file:
[uwsgi]
http = 127.0.0.1:8080
uid = www-data
gid = www-data
wsgi-file = /etc/ckan/default/wsgi.py
virtualenv = /usr/lib/ckan/default
module = wsgi:application
master = true
pidfile = /tmp/%n.pid
harakiri = 50
max-requests = 5000
vacuum = true
callable = application
strict = true

If you notice database connection issues in the uwsgi log, try adding the following configurations to resolve them:

enable-threads = true
lazy-apps true

3.2. Installing CKAN 39

CKAN documentation, Release 2.11.0a0

4, Install Supervisor for the uwsgi

Install Supervisor (a Process Control System) used to control starting, stopping the uwsgi or gunicorn servers:

sudo apt-get install supervisor
sudo service supervisor restart

uwsgi

Create the /etc/supervisor/conf.d/ckan-uwsgi.conf file

[program: ckan-uwsgi]
command=/usr/lib/ckan/default/bin/uwsgi -i /etc/ckan/default/ckan-uwsgi.ini

; Start just a single worker. Increase this number if you have many or
; particularly long running background jobs.

numprocs=1

process_name=%(program_name)s-%(process_num)02d

; Log files - change this to point to the existing CKAN log files
stdout_logfile=/etc/ckan/default/uwsgi.OUT
stderr_logfile=/etc/ckan/default/uwsgi.ERR

; Make sure that the worker is started on system start and automatically
; restarted if it crashes unexpectedly.

autostart=true

autorestart=true

; Number of seconds the process has to run before it is considered to have
; started successfully.
startsecs=10

; Need to wait for currently executing tasks to finish at shutdown.
; Increase this if you have very long running tasks.
stopwaitsecs = 600

; Required for uWSGI as it does not obey SIGTERM.
stopsignal=QUIT

5. Install an email server

If one isn’t installed already, install an email server to enable CKAN’s email features (such as sending traceback emails
to sysadmins when crashes occur, or sending new activity email notifications to users). For example, to install the
Postfix email server, do:

[sudo apt-get install postfix

When asked to choose a Postfix configuration, choose Internet Site and press return.

40 Chapter 3. Maintainer’s guide

http://http://supervisord.org/
http://www.postfix.org/

CKAN documentation, Release 2.11.0a0

6. Create the NGINX config file

Create your site’s NGINX config file at /etc/nginx/sites-available/ckan, with the following contents:

proxy_temp_path /tmp/nginx_proxy 1 2;

server {
client_max_body_size 100M;
location / {
proxy_pass http://127.0.0.1:8080/;
proxy_set_header X-Forwarded-For $remote_addr;
proxy_set_header Host $host;

To prevent conflicts, disable your default nginx sites and restart:

sudo rm -vi /etc/nginx/sites-enabled/default
sudo 1n -s /etc/nginx/sites-available/ckan /etc/nginx/sites-enabled/ckan
sudo service nginx restart

7. Access your CKAN site

You should now be able to visit your server in a web browser and see your new CKAN instance.

8. Setup a worker for background jobs

CKAN uses asynchronous Background jobs for long tasks. These jobs are executed by a separate process which is
called a worker.

To run the worker in a robust way, install and configure Supervisor.

Deployment changes for CKAN 2.9

This section describes how to update your deployment for CKAN 2.9 or later, if you have an existing deployment of
CKAN 2.8 or earlier. This is necessary, whether you continue running CKAN on Python 2 or Python 3, because the
WSGI entry point for running CKAN has changed. If your existing deployment is different to that described in the
official CKAN 2.8 deployment instructions (apache2 + mod_wsgi + nginx) then you’ll need to adapt these instructions
to your setup.

We now recommend you activate the Python virtual environment in a different place, compared to earlier CKAN
versions. For the WSGI server, activation is done in the uwsgi server config file (/etc/ckan/default/ckan-uwsgi.ini).

(In CKAN 2.8.x and earlier, the virtual environment was activated in the WSGI script file.)

3.2. Installing CKAN 41

https://docs.ckan.org/en/2.8/maintaining/installing/deployment.html

CKAN documentation, Release 2.11.0a0

3.3 Upgrading CKAN

This document explains how to upgrade a site to a newer version of CKAN. It will walk you through the steps to upgrade
your CKAN site to a newer version of CKAN.

Note: The currently supported CKAN version is CKAN 2.10.4
Security and performance fixes are also provided for CKAN 2.9.11.

Read more about officially supported versions

3.3.1 1. Prepare the upgrade

» Before upgrading your version of CKAN you should check that any custom templates or extensions you’re using
work with the new version of CKAN. For example, you could install the new version of CKAN in a new virtual
environment and use that to test your templates and extensions.

* You should also read the Changelog to see if there are any extra notes to be aware of when upgrading to the new
version.

Warning: You should always backup your CKAN database before upgrading CKAN. If something goes wrong
with the CKAN upgrade you can use the backup to restore the database to its pre-upgrade state. See Backup your
CKAN database

3.3.2 2. Upgrade CKAN

The process of upgrading CKAN differs depending on whether you have a package install or a source install of CKAN,
and whether you’re upgrading to a major, minor or patch release of CKAN. Follow the appropriate one of these docu-
ments:

Upgrading a CKAN 2 package install to a new patch release

Note: Before upgrading CKAN you should check the compatibility of any custom themes or extensions you’re using,
check the changelog, and backup your database. See Upgrading CKAN.

Patch releases are distributed in the same package as the minor release they belong to, so for example CKAN 2.0,
2.0.1,2.0.2, etc. will all be installed using the CKAN 2.0 package (python-ckan_2.0_amd64.deb):

1. Download the CKAN package:

[wget https://packaging.ckan.org/python-ckan_2.0_amd64.deb

You can check the actual CKAN version from a package running the following command:

[dpkg --info python-ckan_2.0_amd64.deb

Look for the Version field in the output:

42 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Package: python-ckan
Version: 2.0.1-3

2. Install the package with the following command:

[sudo dpkg -i python-ckan_2.0_amd64.deb

Your CKAN instance should be upgraded straight away.

Note: If you have changed the Apache, Nginx or who.ini configuration files, you will get a prompt like the
following, asking whether to keep your local changes or replace the files. You generally would like to keep your
local changes (option N, which is the default), but you can look at the differences between versions by selecting
option D:

Configuration file " /etc/apache2/sites-available/ckan_default'

==> File on system created by you or by a script.

==> File also in package provided by package maintainer.
What would you like to do about it ? Your options are:

Y or I : install the package maintainer's version
N or O : keep your currently-installed version
D : show the differences between the versions
Z : start a shell to examine the situation

The default action is to keep your current version.
**% ckan_default (Y/I/N/0/D/Z) [default=N] ?

L

Your local CKAN configuration file in /etc/ckan/default will not be replaced.

Note: The install process will uninstall any existing CKAN extensions or other libraries located in the src
directory of the CKAN virtualenv. To enable them again, the installation process will iterate all folders in the src
directory, reinstall the requirements listed in pip-requirements.txt and requirements.txt files and run
python setup.py develop for each. If you are using a custom extension which does not use this requirements
file names or is located elsewhere, you will need to manually reenable it.

3. Finally, restart uWSGI and Nginx:

sudo supervisorctl restart ckan-uwsgi:*
sudo service nginx restart

4. You’re done!

You should now be able to visit your CKAN website in your web browser and see that it’s running the new version of
CKAN.

3.3. Upgrading CKAN 43

CKAN documentation, Release 2.11.0a0

Upgrading a CKAN 2 package install to a new minor release

Note: Before upgrading CKAN you should check the compatibility of any custom themes or extensions you’re using,
check the changelog, and backup your database. See Upgrading CKAN .

Each minor release is distributed in its own package, so for example CKAN 2.0.X and 2. 1.X will be installed using
the python-ckan_2.0_amd64.deb and python-ckan_2.1_amd64.deb packages respectively.

1. Download the CKAN package for the new minor release you want to upgrade to (replace the version number

with the relevant one):

[wget https://packaging.ckan.org/python-ckan_2.1_amd64.deb J

2. Install the package with the following command:

[sudo dpkg -i python-ckan_2.1_amd64.deb]

Note: If you have changed the Apache, Nginx or who.ini configuration files, you will get a prompt like the
following, asking whether to keep your local changes or replace the files. You generally would like to keep your
local changes (option N, which is the default), but you can look at the differences between versions by selecting
option D:

(Configuration file " /etc/apache2/sites-available/ckan_default'
==> File on system created by you or by a script.
==> File also in package provided by package maintainer.
What would you like to do about it ? Your options are:

Y or I : install the package maintainer's version
N or O : keep your currently-installed version
D : show the differences between the versions
Z : start a shell to examine the situation

The default action is to keep your current version.
#**% ckan_default (Y/I/N/0/D/Z) [default=N] ?

Your local CKAN configuration file in /etc/ckan/default will not be replaced.

Note: The install process will uninstall any existing CKAN extensions or other libraries located in the src
directory of the CKAN virtualenv. To enable them again, the installation process will iterate over all folders in
the src directory, reinstall the requirements listed in pip-requirements.txt and requirements. txt files
and run python setup.py develop for each. If you are using a custom extension which does not use this
requirements file name or is located elsewhere, you will need to manually reinstall it.

. If there have been changes in the database schema (check the Changelog to find out) you need to upgrade your

database schema.

. If there have been changes in the Solr schema (check the Changelog to find out) you need to restart Jetty for the

changes to take effect:

[sudo service jetty restart]

5. If you have any CKAN extensions installed from source, you may need to checkout newer versions of the exten-

sions that work with the new CKAN version. Refer to the documentation for each extension. We recommend

44

Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

disabling all extensions on your ini file and re-enable them one by one to make sure they are working fine.

6. If new configuration options have been introduced (check the Changelog to find out) then check whether you
need to change them from their default values. See Configuration Options for details.

7. Rebuild your search index by running the ckan search-index rebuild command:

[sudo ckan search-index rebuild -r]

See search-index: Rebuild search index for details of the ckan search-index rebuild command.
8. Finally, restart the web server and Nginx, eg for a CKAN package install running uWSGI:

sudo supervisorctl restart ckan-uwsgi:*
sudo service nginx restart

Upgrading a source install

Note: Before upgrading CKAN you should check the compatibility of any custom themes or extensions you’re using,
check the changelog, and backup your database. See Upgrading CKAN.

The process for upgrading a source install is the same, no matter what type of CKAN release you're upgrading to:

1. Check the Changelog for changes regarding the required 3rd-party packages and their minimum versions (e.g.
web, database and search servers) and update their installations if necessary.

2. Activate your virtualenv and switch to the ckan source directory, e.g.:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

3. Checkout the new CKAN version from git, for example:

git fetch
git checkout ckan-2.10.4

If you have any CKAN extensions installed from source, you may need to checkout newer versions of the exten-
sions at this point as well. Refer to the documentation for each extension.

As of CKAN 2.6 branch naming has changed. See Doing a CKAN release for naming conventions. Specific
patches and minor versions can be checked-out using tags.

4. Update CKAN’s dependencies:

[pip install --upgrade -r requirements.txt J

5. Register any new or updated plugins:

[python setup.py develop J

6. If there have been changes in the Solr schema (check the Changelog to find out) you need to restart Jetty for the
changes to take effect:

[sudo service jetty restart J

7. If there have been changes in the database schema (check the Changelog to find out) you need to upgrade your
database schema.

3.3. Upgrading CKAN 45

CKAN documentation, Release 2.11.0a0

8. If new configuration options have been introduced (check the Changelog to find out) then check whether you
need to change them from their default values. See Configuration Options for details.

9. Rebuild your search index by running the ckan search-index rebuild command:

ckan -c /path/to/ckan.ini search-index rebuild -r --config=/etc/ckan/default/ckan.
—ini

See search-index: Rebuild search index for details of the ckan search-index rebuild command.

10. Finally, restart your web server. For example if you have deployed CKAN using a package install, run this
command:

sudo supervisorctl restart ckan-uwsgi:*®
11. You’re done!

You should now be able to visit your CKAN website in your web browser and see that it’s running the new version of
CKAN.

Upgrading a CKAN install from Python 2 to Python 3

These instructions describe how to upgrade a source install of CKAN 2.9 from Python 2 to Python 3, which is necessary
because Python 2 is end of life, as of January 1st, 2020.

Preparation

* Backup your CKAN source, virtualenv and databases, just in case.

* Upgrade to CKAN 2.9, if you’ve not done already.

Upgrade

You’ll probably need to deactivate your existing virtual environment:

[deactivate]

The existing setup has the virtual environment here: /usr/lib/ckan/default and the CKAN source code underneath in
/usr/lib/ckan/default/src. We’ll move that aside in case we need to roll-back:

sudo mv /usr/lib/ckan/default /usr/lib/ckan/py2
From this doc: Installing CKAN from source you need to do these sections:
e 1. Install the required packages
e 2. Install CKAN into a Python virtual environment

e 6. Link to who.ini

Note: For changes about CKAN deployment see: Installing CKAN from source and specifically the changes with
CKAN 2.9: Deployment changes for CKAN 2.9.

See also:

CKAN releases
Information about the different CKAN releases and the officially supported versions.

46 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Changelog
The changelog lists all CKAN releases and the main changes introduced in each release.

Doing a CKAN release
Documentation of the process that the CKAN developers follow to do a CKAN release.

3.4 Getting started

Once you’ve finished installing CKAN, this section will walk you through getting started with your new CKAN website,
including creating a CKAN sysadmin user, some test data, and the basics of configuring your CKAN site. For this guide,
it is assumed that CKAN has been installed from source. If you have not installed from source, some commands in this
guide will need to be modified (with the correct location of the ckan.ini file for example).

3.4.1 Creating a sysadmin user

You have to use CKAN’s command line interface to create your first sysadmin user, and it can also be useful to cre-
ate some test data from the command line. For full documentation of CKAN’s command line interface (including
troubleshooting) see Command Line Interface (CLI).

Note: CKAN commands are executed using the ckan command on the server that CKAN is installed on. Before
running the ckan commands below, you need to make sure that your virtualenv is activated and that you’re in your ckan
source directory. For example:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

You have to create your first CKAN sysadmin user from the command line. For example, to create a new user called
seanh and make him a sysadmin:

ckan -c /etc/ckan/default/ckan.ini sysadmin add seanh email=seanh@localhost name=seanh
You’ll be prompted to enter a password during account creation.

Or, if you already have an existing user, you could promote him to a sysadmin:

ckan -c /etc/ckan/default/ckan.ini sysadmin add seanh

For a list of other command line commands for managing sysadmins, run:

ckan -c /etc/ckan/default/ckan.ini sysadmin --help

Read the Sysadmin guide to learn what you can do as a CKAN sysadmin.

3.4.2 Creating test data

It can be handy to have some test data to start with, to quickly check that everything works. You can add a random set
of test data to your site from the command line with the following generate fake-data commands:

ckan -c /etc/ckan/default/ckan.ini generate fake-data organization
check the output and save the ID of organization into variable:
owner_org=<0Organization ID from the previous command>

ckan -c /etc/ckan/default/ckan.ini generate fake-data dataset --owner_org=$owner_org

3.4. Getting started 47

mailto:email=seanh@localhost

CKAN documentation, Release 2.11.0a0

If you later want to delete this test data and start again with an empty database, you can use the db clean command.
For a short description of this subcommand, run:

ckan -c /etc/ckan/default/ckan.ini generate fake-data --help

3.4.3 Config file

All of the options that can be set in the admin page and many more can be set by editing CKAN’s config file. By default,
from CKAN 2.9 the config file is located at /etc/ckan/default/ckan.ini. (For older versions, the config file is located at
/etc/ckan/default/development.ini or /etc/ckan/default/production.ini). The config file can be edited in any text editor.
For example, to change the title of your site you would find the ckan.site_title line in your config file and edit it:

[ckan.site_title = Masaq Data Hub]

Make sure the line is not commented-out (lines in the config file that begin with # are considered comments, so if
there’s a # at the start of a line you’ve edited, delete it), save the file, and then restart your web server for the changes
to take effect. For example, if using a CKAN package install:

sudo supervisorctl restart ckan-uwsgi:*®

For full documentation of CKAN’s config file and all the options you can set, see Configuration Options.

Note: If the same option is set in both the config file and in the admin page, the admin page setting takes precedence.
You can use the Reset button on the admin page to clear your settings, and allow settings from the config file to take
effect.

3.5 Database Management

Note: See Command Line Interface (CLI) for details on running the ckan commands mentioned below.

3.5.1 Initialization

Before you can run CKAN for the first time, you need to run db init to initialize your database:
ckan -c /etc/ckan/default/ckan.ini db init
If you forget to do this you’ll see this error message in your web browser:

503 Service Unavailable: This site is currently off-line. Database is not initialised.

48 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

3.5.2 Cleaning

Warning: This will delete all data from your CKAN database!

You can delete everything in the CKAN database, including the tables, to start from scratch:
ckan -c /etc/ckan/default/ckan.ini db clean

After cleaning the database you must do either initialize it or import a previously created dump.

3.5.3 Import and Export

Dumping and Loading databases to/from a file

PostgreSQL offers the command line tools pg_dump and pg_restore for dumping and restoring a database and its
content to/from a file.

For example, first dump your CKAN database:

[sudo -u postgres pg_dump --format=custom -d ckan_default > ckan.dump

Warning: The exported file is a complete backup of the database, and includes API keys and other user data which
may be regarded as private. So keep it secure, like your database server.

Note: If you’ve chosen a non-default database name (i.e. not ckan_default) then you need to adapt the commands
accordingly.

Then restore it again:

ckan -c /etc/ckan/default/ckan.ini db clean
sudo -u postgres pg_restore --clean --if-exists -d ckan_default < ckan.dump

If you’re importing a dump from an older version of CKAN you must upgrade the database schema after the import.

Once the import (and a potential upgrade) is complete you should rebuild the search index.

Exporting Datasets to JSON Lines

You can export all of your CKAN site’s datasets from your database to a JSON Lines file using ckanapi:
ckanapi dump datasets -c /etc/ckan/default/ckan.ini --all -0 my_datasets.jsonl

This is useful to create a simple public listing of the datasets, with no user information. Some simple additions to the
Apache config can serve the dump files to users in a directory listing. To do this, add these lines to your virtual Apache
config file (e.g. /etc/apache2/sites-available/ckan_default.conf):

Alias /dump/ /home/okfn/var/srvc/ckan.net/dumps/

Disable the mod_python handler for static files
<Location /dump>
SetHandler None
(continues on next page)

3.5. Database Management 49

https://www.postgresql.org/docs/current/static/app-pgdump.html
https://www.postgresql.org/docs/current/static/app-pgrestore.html
https://github.com/ckan/ckanapi

CKAN documentation, Release 2.11.0a0

(continued from previous page)

Options +Indexes
</Location>

Warning: Don’t serve an SQL dump of your database (created using the pg_dump command), as those contain
private user information such as email addresses and API keys.

Exporting User Accounts to JSON Lines

You can export all of your CKAN site’s user accounts from your database to a JSON Lines file using ckanapi:

ckanapi dump users -c /etc/ckan/default/ckan.ini --all -0 my_database_users. jsonl

3.5.4 Upgrading

Warning: You should create a backup of your database before upgrading it.

To avoid problems during the database upgrade, comment out any plugins that you have enabled in your ini file.
You can uncomment them again when the upgrade finishes.

If you are upgrading to a new CKAN major release update your CKAN database’s schema using the ckan db upgrade
command:

ckan -c /etc/ckan/default/ckan.ini db upgrade

This command applies all CKAN core migrations and all unapplied migrations from enabled plugins. --skip-core
and --skip-plugins flags can be used to run either only core migration, or only migrations from enabled plugins.

3.6 Command Line Interface (CLI)

Note: From CKAN 2.9 onwards the CKAN configuration file is named ‘ckan.ini’. Previous names: ‘production.ini’
and ‘development.ini’ (plus others) may also still appear in documentation and the software. These legacy names will
eventually be phased out.

Note: From CKAN 2.9 onwards, the paster command used for common CKAN administration tasks has been
replaced with the ckan command.

If you have trouble running ‘ckan’ CLI commands, see Troubleshooting ckan Commands below.

Note: Once you activate your CKAN virtualenv the “ckan” command is available from within any location within the
host environment.

To run a ckan command without activating the virtualenv first, you have to give the full path the ckan script within the
virtualenv, for example:

/usr/lib/ckan/default/bin/ckan -c /etc/ckan/default/ckan.ini user list

50 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanapi

CKAN documentation, Release 2.11.0a0

In the example commands below, we assume you’re running the commands with your virtualenv activated and from
your ckan directory.

The general form of a CKAN ckan command is:
ckan --config=/etc/ckan/default/ckan.ini command

The ™ —config™" option tells CKAN where to find your config file, which it reads for example to know which database
it should use. As you’ll see in the examples below, this option can be given as -c for short.

The config file (ckan.ini) will generally be located in the /etc/ckan/default/ directory however it can be located
in any directory on the host machine

command should be replaced with the name of the CKAN command that you wish to execute. Most commands have
their own subcommands and options.

Note: You may also specify the location of your config file using the CKAN_INI environment variable. You will no
longer need to use —config= or -c to tell ckan where the config file is:

export CKAN_INI=/etc/ckan/default/ckan.ini

Note: You can run the ckan command in the same directory as the CKAN config file when the config file is named
‘ckan.ini’. You will not be required to use —config or -c in this case. For backwards compatibility, the config file can
be also named ‘development.ini’, but this usage is deprecated and will be phased out in a future CKAN release.

cd /usr/lib/ckan/default/src/ckan; ckan command

Commands and Subcommands

ckan -c /etc/ckan/default/ckan.ini user list

(Here user is the name of the CKAN command you’re running, and 1ist is a subcommand of user.)
For a list of all available commands, see CKAN Commands Reference.

Each command has its own help text, which tells you what subcommands and options it has (if any). To print out a
command’s help text, run the command with the --help option, for example:

ckan -c /etc/ckan/default/ckan.ini user --help

3.6.1 CLI command: ckan shell
The main goal to execute a ckan shell command is IPython session with the application loaded for easy debugging and
dynamic coding.
There are three variables already populated into the namespace of the shell:
* app containing the Flask application
* config containing the CKAN config dictrionary
* model module to access to the database using SQLAlchemy syntax

command:

[$ ckan shell

3.6. Command Line Interface (CLI) 51

CKAN documentation, Release 2.11.0a0

Example 1:

$ ckan shell
Python 3.9.13 (main, Dec 11 2022, 15:23:12)
Type 'copyright', 'credits' or 'license' for more information

In [1]: model.User.all()

Out[1]:

[<User id=f48287e2-6fac-41a9-9170-fc25ddbcc2d7 name=default password=$pbkdf2- sha512
—.$25000$4rzXure2NkYoBeA8h5DyHg$yKMLOBZCtY . bA5XYq/qhzXfNCO7QOHGURSkvCjKE2wThE.

. km/2L6GwQbY4p41FXyyRMYXnACLxXvR27rVDq/yw fullname=None email=None.
—,apikey=46a0blcc-28£3-4f96-9cf2-£f0479£fd3f200 created=2022-06-08 12:54:20.344765 reset_
—key=None about=None last_active=None activity_streams_email_notifications=False..
—»sysadmin=True state=active image_url=None plugin_extras=None>]

In [2]: from ckan.logic.action.get import package_show

In [3]: package_show({"model": model}, {"id": "api-package-1"})
Out[3]:

{'author': None,

'author_email': None,

'creator_user_id': 'f0c0®4c11-4369-4cf1-9da4-69d9aaelbaze’,
'id': '922f3a91-c9ed-4e19-a722-366671b7d72c"',
'isopen': False,

'license_id': None,

'license_title': None,

'maintainer': None,

'maintainer_email': None,

'metadata_created': '2022-06-16T14:13:37.736125",
'metadata_modified': '2022-06-16T14:20:19.639665",
'name': 'api-package-1',

'notes': 'Update from API:10000',

'num_resources': 0,

'num_tags': 0,

'organization': None,

'owner_org': None,

'private': False,

'state': 'active',

'title': 'api-package-1',

'type': 'dataset',

'url': None,

'version': None,

'resources': [],

"tags': [1,
'extras': [],
'groups': [],

'relationships_as_subject': [],
'relationships_as_object': []}

52 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Example 2:

In [7]: from ckanext.activity.logic import action

In [8]: before = datetime.fromisoformat('2022-06-16T14:14:00.627446").timestamp()

In [9]: %timeit action.package_activity_list({}, {'id': 'api-package-1', 'before':.
—before})3.17 ms + 11.9 us per loop (mean + std. dev. of 7 runs, 100 loops each)

In [10]: %timeit action.package_activity_list({}, {'id': 'api-package-1', 'offset': 9000}
—)25.3 ms + 504 ps per loop (mean + std. dev. of 7 runs, 10 loops each)

3.6.2 Troubleshooting ckan Commands

Permission Error

If you receive ‘Permission Denied’ error, try running ckan with sudo.

sudo /usr/lib/ckan/default/bin/ckan -c /etc/ckan/default/ckan.ini db clean

Virtualenv not activated, or not in ckan dir
Most errors with ckan commands can be solved by remembering to activate your virtual environment and change
to the ckan directory before running the command:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckan

Error messages such as the following are usually caused by forgetting to do this:
¢ Command ‘foo’ not known (where foo is the name of the command you tried to run)
* The program ‘ckan’ is currently not installed
* Command not found: ckan

e ImportError: No module named webassets (or other ImportErrors)

Running ckan commands provided by extensions

If you’re trying to run a CKAN command provided by an extension that you’ve installed and you’re getting an
error like Command ‘foo’ not known even though you’ve activated your virtualenv, make sure that you have added
the relevant plugin to the ckan.plugins setting in the ini file.

Wrong config file path

AssertionError: Config filename development.ini does not exist
This means you forgot to give the --config or -c option to tell CKAN where to find your config file. (CKAN
looks for a config file named development.ini in your current working directory by default.)

ConfigParser.MissingSectionHeaderError: File contains no section headers
This happens if the config file that you gave with the -c or --config option is badly formatted, or if you gave
the wrong filename.

IOError: [Errno 2] No such file or directory: ‘...’
This means you gave the wrong path to the --config or -c option (you gave a path to a file that doesn’t exist).

3.6. Command Line Interface (CLI) 53

CKAN documentation, Release 2.11.0a0

3.6.3 ckan Commands Reference

The following ckan commands are supported by CKAN:

asset WebAssets commands.

config Search, validate, describe config options
config-tool Tool for editing options in a CKAN config file
datapusher Perform commands in the datapusher.

dataset Manage datasets.

datastore Perform commands to set up the datastore.

db Perform various tasks on the database.

generate Generate empty extension files to expand CKAN
jobs Manage background jobs

sass Compile all root sass documents into their CSS counterparts
notify Send out modification notifications.

plugin-info Provide info on installed plugins.

profile Code speed profiler.

run Start Development server.

search-index Creates a search index for all datasets

sysadmin Gives sysadmin rights to a named user.

tracking Update tracking statistics.

translation Translation helper functions

user Manage users.

views Create views on relevant resources

asset: WebAssets commands

Usage

ckan asset build - Builds bundles, regardless of whether they are changed or.
—not

ckan asset watch - Start a daemon which monitors source files, and rebuilds.
—bundles

ckan asset clean - Will clear out the cache, which after a while can grow.

—quite large

config: Search, validate, describe config options

Usage

ckan config declaration [PLUGIN...] - Print declared config options for the given..
—plugins.

ckan config describe [PLUGIN..] - Print out config declaration for the given.
—plugins.

ckan config search [PATTERN] - Print all declared config options that match.
—pattern.

ckan config undeclared - Print config options that has no declaration.
ckan config validate - Validate global configuration object against.
—declaration.

54 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

config-tool: Tool for editing options in a CKAN config file

Usage

ckan config-tool --section (-s) - Section of the config file

ckan config-tool --edit (-e) - Checks the option already exists in the config file
ckan config-tool --file (-£f) - Supply an options file to merge in

Examples

ckan config-tool /etc/ckan/default/ckan.ini sqlalchemy.url=123 'ckan.site_title=ABC'

ckan config-tool /etc/ckan/default/ckan.ini -s server:main -e port=8080
ckan config-tool /etc/ckan/default/ckan.ini -f custom_options.ini

datapusher: Perform commands in the datapusher

Usage
ckan datapusher resubmit - Resubmit udated datastore resources
ckan datapusher submit - Submits resources from package

dataset: Manage datasets

Usage

ckan dataset DATASET_NAME|ID - shows dataset properties

ckan dataset show DATASET_NAME|ID - shows dataset properties

ckan dataset list - lists datasets

ckan dataset delete [DATASET_NAME|ID] - changes dataset state to 'deleted'
ckan dataset purge [DATASET_NAME|ID] - removes dataset from db entirely

datastore: Perform commands in the datastore

Make sure that the datastore URLs are set properly before you run these commands.

Usage

ckan datastore set-permissions - generate SQL for permission configuration
ckan datastore dump - dump a datastore resource

ckan datastore purge - purge orphaned datastore resources

db: Manage databases

ckan db clean - Clean the database

ckan db downgrade - Downgrade the database

ckan db duplicate_emails - Check users email for duplicate

ckan db init - Initialize the database

ckan db pending-migrations - List all sources with unapplied migrations.
ckan db upgrade - Upgrade the database

ckan db version - Returns current version of data schema

See Database Management.

3.6. Command Line Interface (CLI)

CKAN documentation, Release 2.11.0a0

generate: Scaffolding for regular development tasks

Usage

ckan generate config - Create a ckan.ini file.

ckan generate extension - Create empty extension.

ckan generate fake-data - Generate random entities of the given category.
ckan generate migration - Create new alembic revision for DB migration.

jobs: Manage background jobs

ckan jobs cancel - cancel a specific job.

ckan jobs clear - cancel all jobs.

ckan jobs list - list jobs.

ckan jobs show - show details about a specific job.
ckan jobs test - enqueue a test job.

ckan jobs worker - start a worker

The jobs command can be used to manage Background jobs.

New in version 2.7.

Run a background job worker

ckan -c /etc/ckan/default/ckan.ini jobs worker [--burst] [QUEUES]

Starts a worker that fetches job from the job queues and executes them. If no queue names are given then it listens to
the default queue. This is equivalent to

ckan -c /etc/ckan/default/ckan.ini jobs worker default
If queue names are given then the worker listens to those queues and only those:
ckan -c /etc/ckan/default/ckan.ini jobs worker my-custom-queue another-special-queue

Hence, if you want the worker to listen to the default queue and some others then you must list the default queue
explicitly

ckan -c /etc/ckan/default/ckan.ini jobs worker default my-custom-queue

If the --burst option is given then the worker will exit as soon as all its queues are empty. Otherwise it will wait
indefinitely until a new job is enqueued (this is the default).

Note: In a production setting you should use a more robust way of running background workers.

56 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

List enqueued jobs

ckan -c /etc/ckan/default/ckan.ini jobs list [QUEUES]

Lists the currently enqueued jobs from the given job queues. If no queue names are given then the jobs from all queues
are listed.

Show details about a job

ckan -c /etc/ckan/default/ckan.ini jobs show ID

Shows details about the enqueued job with the given ID.

Cancel a job

ckan -c /etc/ckan/default/ckan.ini jobs cancel ID

Cancels the enqueued job with the given ID. Jobs can only be canceled while they are enqueued. Once a worker has
started executing a job it cannot be aborted anymore.

Clear job queues

ckan -c /etc/ckan/default/ckan.ini jobs clear [QUEUES]

Cancels all jobs on the given job queues. If no queues are given then all queues are cleared.

Enqueue a test job

ckan -c /etc/ckan/default/ckan.ini jobs test [QUEUES]

Enqueues a test job. If no job queues are given then the job is added to the default queue. If queue names are given
then a separate test job is added to each of the queues.

sass: Compile all root sass documents into their CSS counterparts

Usage

[sass

notify: Send out modification notifications

Usage

ckan notify replay - send out modification signals. In "replay" mode,
an update signal is sent for each dataset in the database.

3.6. Command Line Interface (CLI) 57

CKAN documentation, Release 2.11.0a0

plugin-info: Provide info on installed plugins

As the name suggests, this commands shows you the installed plugins (based on the .ini file) , their description, and
which interfaces they implement

profile: Code speed profiler

Provide a ckan url and it will make the request and record how long each function call took in a file that can be read by
runsnakerun.

Usage

[ckan profile URL]

The result is saved in profile.data.search. To view the profile in runsnakerun:

[runsnakerun ckan.data.search.profile]

You may need to install the cProfile python module.

run: Start Development server

Usage

ckan run --host (-h) - Set Host

ckan run --port (-p) - Set Port

ckan run --disable-reloader (-r) - Use reloader

ckan run --passthrough_errors - Crash instead of handling fatal errors
ckan run --disable-debugger - Disable the default debugger

Use --passthrough-errors to enable pdb

Exceptions are caught and handled by CKAN. Sometimes, user needs to disable this error handling, to be able to use
pdb or the debug capabilities of the most common IDE. This allows to use breakpoints, inspect the stack frames and
evaluate arbitrary Python code. Running CKAN with --passthrough-errors will automatically disable CKAN
reload capabilities and run everything in a single process, for the sake of simplicity.

Example:

python -m pdb ckan run —passthrough-errors

Use --disable-debugger for external debugging

CKAN uses the run_simple function from the werkzeug package, which enables hot reloading and debugging amongst
other things. If we wish to use external debugging tools such as debugpy (for remote, container-based debugging), we
must disable the default debugger for CKAN.

Example:

python -m pdb ckan run —disable-debugger

58 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

search-index: Search index commands

Usage

ckan search-index check Check search index

ckan search-index clear - Clear the search index

ckan search-index rebuild Rebuild search index

ckan search-index rebuild-fast Reindex with multiprocessing
ckan search-index show - Show index of a dataset

search-index: Rebuild search index

Rebuilds the search index. This is useful to prevent search indexes from getting out of sync with the main database.
For example
ckan -c /etc/ckan/default/ckan.ini search-index rebuild

This default behaviour will refresh the index keeping the existing indexed datasets and rebuild it with all datasets. If
you want to rebuild it for only one dataset, you can provide a dataset name

ckan -c /etc/ckan/default/ckan.ini search-index rebuild test-dataset-name
Alternatively, you can use the -o or —only-missing option to only reindex datasets which are not already indexed
ckan -c /etc/ckan/default/ckan.ini search-index rebuild -o

There is also an option available which works like the refresh option but tries to use all processes on the computer to
reindex faster

ckan -c /etc/ckan/default/ckan.ini search-index rebuild-fast
There is also an option to clear the whole index first and then rebuild it with all datasets:
ckan -c /etc/ckan/default/ckan.ini search-index rebuild --clear

There are other search related commands, mostly useful for debugging purposes

ckan search-index check - checks for datasets not indexed
ckan search-index show DATASET_NAME - shows index of a dataset
ckan search-index clear [DATASET_NAME] - clears the search index for the provided.

—.dataset or for the whole ckan instance

sysadmin: Give sysadmin rights

Usage

ckan sysadmin add - convert user into a sysadmin
ckan sysadmin list - list sysadmins

ckan sysadmin remove - removes user from sysadmins

For example, to make a user called ‘admin’ into a sysadmin

ckan -c /etc/ckan/default/ckan.ini sysadmin add admin

3.6. Command Line Interface (CLI) 59

CKAN documentation, Release 2.11.0a0

tracking: Update tracking statistics

Starting CKAN 2.11 tracking command is only available if the extension es enabled.

Usage
ckan tracking update [start_date] - update tracking stats
ckan tracking export FILE [start_date] - export tracking stats to a csv file

translation: Translation helper functions

Usage

ckan translation js - generate the JavaScript translations
ckan translation mangle - mangle the zh_TW translations for testing
ckan translation check-po - check po files for common mistakes

Note: Since version 2.7 the JavaScript translation files are automatically regenerated if necessary when CKAN is
started. Hence you usually do not need to run ckan translation js manually.

user: Create and manage users

Lets you create, remove, list and manage users.

Usage

ckan user add - add new user

ckan user list - list all users

ckan user remove - remove user

ckan user setpass - set password for the user
ckan user show - show user

For example, to create a new user called ‘admin’

ckan -c /etc/ckan/default/ckan.ini user add admin email=admin@localhost

Note: You can use password=test1234 option if “non-interactive” usage is a requirement.

To delete the ‘admin’ user

ckan -c /etc/ckan/default/ckan.ini user remove admin

60 Chapter 3. Maintainer’s guide

mailto:email=admin@localhost

CKAN documentation, Release 2.11.0a0

views: Create views on relevant resources

Usage

ckan views clean - permanently delete views for all types no...
ckan views clear - permanently delete all views or the ones with...
ckan views create - Ccreate views on relevant resources.

ckan views --dataset (-d) - Set Dataset

ckan views --no-default-filters

ckan views --search (-s) - Set Search

ckan views --yes (-y)

3.7 Organizations and authorization

CKAN’s authorization system controls which users are allowed to carry out which actions on the site. All actions
that users can carry out on a CKAN site are controlled by the authorization system. For example, the authorization
system controls who can register new user accounts, delete user accounts, or create, edit and delete datasets, groups
and organizations.

Authorization in CKAN can be controlled in four ways:
1. Organizations
2. Dataset collaborators
3. Configuration file options
4. Extensions

The following sections explain each of the four methods in turn.

Note: An organization admin in CKAN is an administrator of a particular organization within the site, with control
over that organization and its members and datasets. A sysadmin is an administrator of the site itself. Sysadmins
can always do everything, including adding, editing and deleting datasets, organizations and groups, regardless of the
organization roles and configuration options described below.

3.7.1 Organizations
Organizations are the primary way to control who can see, create and update datasets in CKAN. Each dataset can
belong to a single organization, and each organization controls access to its datasets.

Datasets can be marked as public or private. Public datasets are visible to everyone. Private datasets can only be seen
by logged-in users who are members of the dataset’s organization. Private datasets are not shown in dataset searches
unless the logged in user (or the user identified via an API key) has permission to access them.

When a user joins an organization, an organization admin gives them one of three roles: member, editor or admin.
A member can:

* View the organization’s private datasets.
An editor can do everything a member can plus:

* Add new datasets to the organization

3.7. Organizations and authorization 61

CKAN documentation, Release 2.11.0a0

« Edit or delete any of the organization’s datasets
* Make datasets public or private.
An organization admin can do everything as editor plus:
* Add users to the organization, and choose whether to make the new user a member, editor or admin
* Change the role of any user in the organization, including other admin users
* Remove members, editors or other admins from the organization
« Edit the organization itself (for example: change the organization’s title, description or image)
* Delete the organization

When a user creates a new organization, they automatically become the first admin of that organization.

3.7.2 Dataset collaborators

Changed in version 2.9: Dataset collaborators were introduced in CKAN 2.9

In addition to traditional organization-based permissions, CKAN instances can also enable the dataset collaborators
feature, which allows dataset-level authorization. This provides more granular control over who can access and modify
datasets that belong to an organization, or allows authorization setups not based on organizations. It works by allowing
users with appropriate permissions to give permissions to other users over individual datasets, regardless of what
organization they belong to.

Dataset collaborators are not enabled by default, you need to activate it by setting
ckan.auth.allow_dataset_collaborators to True.

By default, only Administrators of the organization a dataset belongs to can add collaborators to a dataset. When adding
them, they can choose between two roles: member and editor.

A member can:
* View the dataset if it is private.
An editor can do everything a member can plus:
* Make the dataset public or private.
« Edit or delete the dataset (including assigning it to an organization)
In addition, if ckan.auth.allow_admin_collaborators is set to True, collaborators can have another role: admin.
An admin collaborator can do everything an editor can plus:
¢ Add collaborators to the dataset, and choose whether to make them a member, editor or admin (if enabled)
* Change the role of any collaborator in the dataset, including other admin users
* Remove collaborators of any role from the dataset

If the ckan.auth.allow_admin_collaborators setting is turned off in a site where admin collaborators have al-
ready been created, existing collaborators with role admin will no longer be able to manage collaborators, but they
will still be able to edit and access the datasets that they are assigned to (ie they will have the same permissions as an
editor.

If the global ckan.auth.allow_dataset_collaborators setting is turned off in a site where collaborators have
already been created, collaborators will no longer have permissions on the datasets they are assigned to, and normal
organization-based permissions will be in place.

62 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Warning: When turning off this setting, you must reindex all datasets to update the permission labels, in order to
prevent access to private datasets to the previous collaborators.

By default, collaborators can not change the owner organization of a dataset unless they are admins or editors in both
the source and destination organizations. To allow collaborators to change the owner organization even if they don’t
belong to the source organization, set ckan.auth.allow_collaborators_to_change_owner_org to True.

Dataset collaborators can be used with other authorization settings to create custom authentication
scenarios. For instance, on instances where datasets don’t need to belong to an organization (both
ckan.auth.create_dataset_if not_in_organization and ckan.auth.create_unowned_dataset are True), the user
that originally created a dataset can also add collaborators to it (allowing admin collaborators or not depending on
the ckan.auth.allow_admin_collaborators setting). Note that in this case though, if the dataset is assigned
to an organization, the original creator might no longer be able to access and edit, as organization permissions take
precedence over collaborators ones.

3.7.3 Configuration File Options

See Authorization Settings.

3.7.4 Extensions
CKAN extensions can implement custom authorization rules by overriding the authorization functions that CKAN
uses. This is done by implementing the TAuthFunctions plugin interface.

Dataset visibility is determined by permission labels stored in the search index. Implement the TPermissionLabels
plugin interface then rebuild your search index to change your dataset visibility rules. There is no no need to override
the package_show auth function, it will inherit these changes automatically.

To get started with writing CKAN extensions, see Extending guide.

3.8 Data preview and visualization

Contents

* Data preview and visualization

— Overview

Managing resource views

Defining views to appear by default

Available view plugins
* DataTables view
% Text view
% Image view

* Video view

* Audio view

3.8. Data preview and visualization 63

CKAN documentation, Release 2.11.0a0

* Web page view

Other view plugins

Resource Proxy

Migrating from previous CKAN versions

Command line interface

3.8.1 Overview

The CKAN resource page can contain one or more visualizations of the resource data or file contents (a table, a bar
chart, a map, etc). These are commonly referred to as resource views.

E A Mckan @ o

N (@ ka n Datasets Organisations Groups About

/ Datasets / Number of Ebola Cases and ... / Ebola data

Ebola data —

JRL: http://localhost:5001/dataset/1be0fc03-13d1-4d3b-a7f1-fd84ech4 7 3ca/resource/c409fde7-dbeb-4cab-be04-67996e1 ceeda/downloa.

Total number of probable, confirmed and suspected Ebola cases and deaths in Guinea, Liberia, Sierra Leone, Nigeria, Senegal, Mali, Spain
USA and the UK according to Ebola Data and Statistics.
Source: https://data.hdx.rwlabs.org

BB Table [ml Cases in Sierra Leone = [ml] Casesin Guinea [l Casesin Liberia 9 Distribution of treatment centers
Add Filter <[> Embed
9000

value

8000
7000
6000
5000
4000
3000

2000

1000

Sep Sep 16 Oct 01 Oct 16 Nowv 01 Nov 16 Dec 01 Dec 16 Jan 01 Jan 16 Feb 01

64 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

The main features of resource views are:
* One resource can have multiple views of the same data (for example a grid and some graphs for tabular data).
* Dataset editors can choose which views to show, reorder them and configure them individually.
¢ Individual views can be embedded on external sites.

Different view types are implemented via custom plugins, which can be activated on a particular CKAN site. Once
these plugins are added, instance administrators can decide which views should be created by default if the resource is
suitable (for instance a table on resources uploaded to the DataStore, a map for spatial data, etc.).

Whether a particular resource can be rendered by the different view plugins is decided by the view plugins themselves.
This is generally done checking the resource format or whether its data is on the DataStore extension or not.

3.8.2 Managing resource views

Users who are allowed to edit a particular dataset can also manage the views for its resources. To access the management
interface, click on the Manage button on the resource page and then on the Views tab. From here you can create new
views, update or delete existing ones and reorder them.

Datasets Organisations Groups About

4 / Datasets / Number of Ebola Cases and ... / CSV / Edit

csv i
[# Edit resource & DataStore = Views A LT Sl

Format

CSV

New view ~ = Reorder resource view

B8 Data Explorer

[l Graph

[za] Image ne
9 Map

% Website
Ll Uases In LiDeria

Q Distribution of treatment centers

The New view dropdown will show the available view types for this particular resource. If the list is empty, you may
need to add the relevant view plugins to the ckan.plugins setting on your configuration file, eg:

3.8. Data preview and visualization 65

CKAN documentation, Release 2.11.0a0

[ckan.plugins = ... image_view datatables_view pdf_view J

3.8.3 Defining views to appear by default

From the management interface you can create and edit views manually, but in most cases you will want views to be
created automatically on certain resource types, so data can be visualized straight away after uploading or linking to a
file.

To do so, you define a set of view plugins that should be checked whenever a dataset or resource is created or updated.
For each of them, if the resource is a suitable one, a view will be created.

This is configured with the ckan.views.default_views setting. In it you define the view plugins that you want to be
created as default:

[ckan.views.default_views = datatables_view pdf_view geojson_view]

This configuration does not mean that each new resource will get all of these views by default, but that for instance if
the uploaded file is a PDF file, a PDF viewer will be created automatically and so on.

3.8.4 Available view plugins

Some view plugins for common formats are included in the main CKAN repository. These don’t require further setup
and can be directly added to the ckan.plugins setting.

66 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

DataTables view

311_nyc-10k-rows.csv

URL: http:/fjgnativida

using simple fts language and 3 gin index

H Table

d-VirtualBoe- 20044 s local'dataset/171§0c45-380e-45Ti-Bde 3-deT 1 fd?bf 222 iresources/ f54 2 3dcS-

#F Manage @ Download - | A Data API

T2 download/311_nye-10k-row....

® Fullscreen «» Embed
Show | 20 ~ | entries: ? ? T T ? T T
Showing 1 to 20 of &3 entries (fittered from 9,599 total entries) 9 Search:
_id Created Date * Agency Complaint Type Descriptor Incident Zip » City Community Board Status Lai
[x] [013-08 ele [prook | [[

716 200306-27700:00:00 HFD ELECTRIC ELEICTRIC-5UPFLY 237 BROOK LN 04 BROOKLYN Closed ~

270) 200306 27T00:00:00 HPD ELECTRIC ELE CTRIC-5UPPLY 23T BROOK "M 04 BROOKLYN Closad

T05 | 200306-27700:00:00 HFD ELECTRIC ELE CTRIC-WIRING 235 BROOK LN 15 BROOKLYN Closed

47T | | 200306 27T00:00:00 HPD ELECTRIC ELE CTRIC-5UFPFLY iz BROOK "M 07T BROOKLYN Closad

1333 | 20006 27T00:00:00 HPD APPLIANCE ELECTRIC/GAS-RANGE 11232 BROOK "M 12 BROOKLYN Closad

1000 | 204306-27T00:00:00 HFD COMSTRUCTION ELE\ATOR 11230 BROOK LN 14 BROOKLYN Closed

231 | 20006 ZTT00:00:00 HPD ELECTRIC ELECTRIC-WIRING j i BROOK "M 14 BROOKLYN Closad

1203 | 200306-27T00:00:00 HPD ELECTRIC ELE CTRIC-SUPPLY G BROOKIL"M 14 BROOKLYN Closad

1657 | 200306-27T00:00:00 HFD ELECTRIC ELE CTRIC-WIRING 1226 BROOK LN 17 BROOKLYN Closed

1678 200306 27T700:00:00 HPD ELECTRIC ELE CTRIC-WIRING b P BROOK "M 17 BROOKLYN Closad

450 200306-27700:00:00 HFD ELECTRIC ELE CTRIC-WIRING 225 BROOK LN 03 BROOKLYN Closed

J62 20006 2TT00:00:00 HPD ELECTRIC ELE CTRIC-5UPPLY 11225 BROOK "M I3 BROOKLYN Closad

178 20306 -27T00:00:00 HPD ELECTRIC ELECTRIC-5UPPLY nzrz BROOK "M 01 BROOKLYN Closad

1033 200306-27T00:00:00 HFD ELECTRIC ELE CTRIC-5UFFLY | s BROOK LN 01 BROOKLYN Closed
< | —— p— — e —— - . e — - ¥
£
testi—311_nyc-10k-rows.csv @ 2] s s .

Sort: Created Date a Incident Zip =

View plugin: datatables_view

Displays a filterable, sortable, table view of structured data using the DataTables jQuery plugin, with the following

features.

 Search highlighting

¢ Column Filters

e Multi-column sorting

* Two view modes (table/list). Table shows the data in a typical grid with horizontal scrolling. List displays the
data in a responsive mode, with a Record Details view.

Filtered Downloads

* Column Visibility control

» Copy to clipboard and Printing of filtered results and row selection/s

* Drag-and-drop column reordering

3.8. Data preview and visualization

67

https://datatables.net/

CKAN documentation, Release 2.11.0a0

* State Saving - saves search keywords, column order/visibility, row selections and page settings between session,
with the ability to share saved searches.

* Data Dictionary Integration
* Automatic “linkification” of URLs
* Automatic creation of zoomable thumbnails when a cell only contains a URL to an image.

* Available automatic, locale-aware date formatting to convert raw ISO-8601 timestamps to a user-friendly date
format

It is designed not only as a data viewer, but also as a simple ad-hoc report generator - allowing users to quickly find an
actionable subset of the data they need from inside the resource view, without having to first download the dataset.

It’s also optimized for embedding datasets and saved searches on external sites - with a backlink to the portal and
automatic resizing.

This plugin requires data to be in the DataStore.

Text view

B Text

</> Embed

>xml version="1.8" encoding="UTF-8

<iati-activities generated-datetime="2014-11-24T16:19:39+00:00" version="1.03">

<iati-activity xml:lang="en" default-currency="GBP" last-updated-datetime="2014-10-06T16:00:26+00:00">
<reporting-org ref="GB-CHC-283302" type="21" xml:lang="en">ACORD</reporting-org>
<iati-identifier=GB-CHC-283302-GDRCO8</iati-identifier=>
<title xml:lang="en">Promoting Gender Equality and Food Security in Mushie</title>
<description xml:lang="en" type="1">This project aims to empower small holder farmers’ organisations, es
<activity-status code="2"/>
<activity-date type="start-actual" iso-date="2011-87-01"/>
<activity-date type="end-planned" iso-date="2014-06-30"/>
<contact-info=
<email=info@acordinternational.org</email=>
</contact-info=
<participating-org xml:lang="en" type="10" role="Funding" ref="GB-1-201242-101">DFID</participating-org>
<participating-org type="21" role="Accountable" ref="GB-CHC-283302">ACORD</participating-org>
<participating-org type="21" role="Implementing" ref="GB-CHC-283302">ACORD</participating-org>
<recipient-country code="CD"/>
<sector vocabulary="DAC" code="15150"/>
<default-flow-type code="30"/>
<default-aid-type code="CO01"/>
<budget type="1">
<period-start iso-date="20811-07-01"/>
<period-end iso-date="2014-06-30"/>
<value currency="GBP" value-date="2011-87-01">476748</value>
</budget>
<transaction ref="cl-ql-y2">
<transaction-type code="IF"/>
<provider-org ref="GB-1" provider-activity-id="GB-1-201242-101">DFID</provider-org>
<receiver-org ref="GB-CHC-283302" receiver-activity-id="GB-CHC-283302-GDRCA8">ACORD</receiver-org>

<value currency="GBP" value-date="2012-06-14">31375</value>
~trancartinn_data ica_data_"IR172_AR_1A"/~

View plugin: text_view

Displays files in XML, JSON or plain text based formats with the syntax highlighted. The formats detected can be con-
figured using the ckan.preview.xml_formats, ckan.preview.json_formats and ckan.preview.text_formats configuration
options respectively.

If you want to display files that are hosted in a different server from your CKAN instance (eg that haven’t been uploaded
to CKAN) you will need to enable the Resource Proxy plugin.

68 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Image view

Eal Image

</> Embed

View plugin: image_view

If the resource format is a common image format like PNG, JPEG or GIF, it adds an tag pointing to the resource
URL. You can provide an alternative URL on the edit view form. The available formats can be configured using the
ckan.preview.image_formats configuration option.

3.8. Data preview and visualization 69

CKAN documentation, Release 2.11.0a0

Video view

[Video

¥ Fullscreen </> Embed

» 0:18/0:30

View plugin: video_view
This plugin uses the HTMLS <video> tag to embed video content into a page, such as movie clip or other video streams.

There are three supported video formats: MP4, WebM, and OGG.

Video url:

Poster url:

You can provide an alternative URL on the edit view form. Otherwise, the resource link will be used.

Also, you can provide a poster image URL. The poster image will be shown while the video is downloading, or until
the user hits the play button. If this is not provided, the first frame of the video will be used instead.

70 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Audio view
[Audio
X Fullscreen <> Embed
1l 046 /052)

View plugin: audio_view
This plugin uses the HTMLS5 audio tag to embed an audio player on the page.

Since we rely on HTMLS <audio> tag, there are three supported audio formats: MP3, WAV, and OGG. Notice.
Browsers don’t all support the same file types and audio codecs.

Audio url:

Preview Update

You can provide an alternative URL on the edit view form. Otherwise, the resource link will be used.

3.8. Data preview and visualization 71

https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Containers
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Audio_codecs

CKAN documentation, Release 2.11.0a0

Web page view

Eal Image = % CartoDB

External CartoDB Visualization </> Embed

Fs
Ay L 1) fgr @ o
L b L ! L)
e e o 2 Syie 000, ¢ ® o Ce
° 9 & TESHEAD °®] » Z
. FUARS @2 * o ., o 04
. - 0 o (]
° e [° -
& L J
L] e ° .. ™ - oo
o P "
o0 [] twig
[]
> ° L] e oo !

1 @ OpenStreetMap contributors © CartoDB, CEI‘[DE)B attribution

View plugin: webpage_view

Adds an <iframe> tag to embed the resource URL. You can provide an alternative URL on the edit view form.

Warning: Do not activate this plugin unless you trust the URL sources. It is not recommended to
enable this view type on instances where all users can create datasets.

3.8.5 Other view plugins
There are many more view plugins developed by the CKAN community, which are hosted on separate repositories.
Some examples include:

* React Data explorer: A modern data explorer, maintained by Datopian.

» Ckanext Visualize: An extension to easily create user visualization from data in the DataStore, maintained by
Keitaro.

* Dashboard: Allows to combine multiple views into a single dashboard.
* PDF viewer: Allows to render PDF files on the resource page.
* Geo viewer: Renders various spatial formats like GeoJSON, WMS or shapefiles in an interactive map.

 Choropleth map: Displays data on the DataStore on a choropleth map.

72 Chapter 3. Maintainer’s guide

https://github.com/datopian/data-explorer
https://github.com/keitaroinc/ckanext-visualize
https://github.com/ckan/ckanext-dashboard
https://github.com/ckan/ckanext-pdfview
https://github.com/ckan/ckanext-geoview
http://geojson.org
https://github.com/ckan/ckanext-mapviews

CKAN documentation, Release 2.11.0a0

* Basic charts: Provides alternative graph types and renderings.
If you want to add another view type to this list, edit this file by sending a pull request on GitHub.

New plugins to render custom view types can be implemented using the TResourceView interface.

Todo: Link to a proper tutorial for writing custom views

3.8.6 Resource Proxy

As resource views are rendered on the browser, if the file they are accessing is located in a different domain than the
one CKAN is hosted, the browser will block access to it because of the same-origin policy. For instance, files hosted
on www.example.com won’t be able to be accessed from the browser if CKAN is hosted on data.catalog.com.

To allow view plugins access to external files you need to activate the resource_proxy plugin on your configuration
file:

[ckan.plugins = resource_proxy ...

This will request the file on the server side and serve it from the same domain as CKAN.

You can modify the maximum allowed size for proxied files using the ckan.resource_proxy.max._file_size configuration
setting.

3.8.7 Migrating from previous CKAN versions

If you are upgrading an existing instance running CKAN version 2.2.x or lower to CKAN 2.3 or higher, you need to
perform a migration process in order for the resource views to appear. If the migration does not take place, resource
views will only appear when creating or updating datasets or resources, but not on existing ones.

The migration process involves creating the necessary view objects in the database, which can be done using the ckan
views create command.

Note: The ckan views create command uses the search API to get all necessary datasets and resources, so make
sure your search index is up fo date before starting the migration process.

The way the ckan views create commands works is getting all or a subset of the instance datasets from the search
index, and for each of them checking against a list of view plugins if it is necessary to create a view object. This gets
determined by each of the individual view plugins depending on the dataset’s resources fields.

Before each run, you will be prompted with the number of datasets affected and asked if you want to continue (unless
you pass the -y option):

You are about to check 3336 datasets for the following view plugins: ['image_view',
—'datatables_view', 'text_view']
Do you want to continue? [Y/n]

Note: On large CKAN instances the migration process can take a significant time if using the default options. It
is worth planning in advance and split the process using the search parameters to only check relevant datasets. The
following documentation provides guidance on how to do this.

3.8. Data preview and visualization 73

https://github.com/ckan/ckanext-basiccharts
http://en.wikipedia.org/wiki/Same_origin_policy

CKAN documentation, Release 2.11.0a0

If no view types are provided, the default ones are used (check Defining views to appear by default to see how these
are defined):

[ckan -c |ckan.ini| views create J

Specific view types can be also provided:

[ckan -c |ckan.ini| views create image_view datatables_view pdf_view J

For certain view types (the ones with plugins included in the main CKAN core), default filters are applied to the search
to only get relevant resources. For instance if image_view is defined, filters are added to the search to only get datasets
with resources that have image formats (png, jpg, etc).

You can also provide arbitrary search parameters like the ones supported by package_search (). This can be useful
for instance to only include datasets with resources of a certain format:

[ckan -c |ckan.ini| views create geojson_view -s '{"fq": "res_format:GEOJSON"}"']

To instead avoid certain formats you can do:

[ckan -c |ckan.ini| views create -s '{"fq": "-res_format:HTML"}']

Of course this is not limited to resource formats, you can filter out or in using any field, as in a normal dataset search:

[ckan -Cc |ckan.ini| views create -s '{"q": "groups:visualization-examples"}']

Tip: If you set the ckan_logger level to DEBUG on your configuration file you can see the full search parameters
being sent to Solr.

For convenience, there is also an option to create views on a particular dataset or datasets:

ckan -c |ckan.ini| views create -d dataset_id

ckan -c |ckan.ini| views create -d dataset_name -d dataset_name

3.8.8 Command line interface

The ckan views command allows to create and remove resource views objects from the database in bulk.

Check the command help for the full options:

[ckan -c |ckan.ini| views create -h]

Todo: Tutorial for writing custom view types.

74 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

3.9 FileStore and file uploads

When enabled, CKAN’s FileStore allows users to upload data files to CKAN resources, and to upload logo images for
groups and organizations. Users will see an upload button when creating or updating a resource, group or organization.

New in version 2.2: Uploading logo images for groups and organizations was added in CKAN 2.2.

Changed in version 2.2: Previous versions of CKAN used to allow uploads to remote cloud hosting but we have
simplified this to only allow local file uploads (see Migration from 2.1 to 2.2 for details on how to migrate). This is to
give CKAN more control over the files and make access control possible.

See also:
DataStore extension

Resource files linked-to from CKAN or uploaded to CKAN’s FileStore can also be pushed into CKAN’s
DataStore, which then enables data previews and a data API for the resources.

3.9.1 Setup file uploads

To setup CKAN’s FileStore with local file storage:
1. Create the directory where CKAN will store uploaded files:
sudo mkdir -p /var/lib/ckan/default
2. Add the following line to your CKAN config file, after the [app:main] line:
ckan.storage_path = /var/lib/ckan/default

3. Set the permissions of your ckan.storage_path directory. For example if you’re running CKAN with Nginx, then
the Nginx’s user (www-data on Ubuntu) must have read, write and execute permissions for the ckan.storage_path:

sudo chown www-data /var/lib/ckan/default
sudo chmod u+rwx /var/lib/ckan/default

4. Restart your web server, for example to restart uWSGI on a package install:

[sudo supervisorctl restart ckan-uwsgi:*

3.9.2 FileStore API

Changed in version 2.2: The FileStore API was redesigned for CKAN 2.2. The previous API has been deprecated.

Files can be uploaded to the FileStore using the resource_create () and resource_update () action API functions.
You can post multipart/form-data to the API and the key, value pairs will be treated as if they are a JSON object. The
extra key upload is used to actually post the binary data.

For example, to create a new CKAN resource and upload a file to it using curl:

curl -H'Authorization: your-api-key' 'http://yourhost/api/action/resource_create' --form.
—upload=@filetoupload --form package_id-my_dataset

(Curl automatically sends a multipart-form-data heading with you use the --form option.)

To create a new resource and upload a file to it using the Python library requests:

3.9. FileStore and file uploads 75

http://curl.haxx.se/
http://python-requests.org/

CKAN documentation, Release 2.11.0a0

import requests

requests.post('http://0.0.0.0:5000/api/action/resource_create',
data={"package_id":"my_dataset"},
headers={"Authorization": "21a47217-6d7b-49c5-88f9-72ebd5a4d4bb"},
files=[('upload', open('/path/to/file/to/upload.csv', 'rb'))])

(Requests automatically sends a multipart-form-data heading when you use the files= parameter.)

To overwrite an uploaded file with a new version of the file, post to the resource_update () action and use the upload
field:

curl -H'Authorization: your-api-key' 'http://yourhost/api/action/resource_update' --form.
—upload=@newfiletoupload --form id=resourceid

To replace an uploaded file with a link to a file at a remote URL, use the clear_upload field:

curl -H'Authorization: your-api-key' 'http://yourhost/api/action/resource_update' --form.,
—url=http://expample.com --form clear_upload=true --form id=resourceid

3.9.3 Migration from 2.1 to 2.2

If you are using pairtree local file storage then you can keep your current settings without issue. The pairtree and new
storage can live side by side but you are still encouraged to migrate. If you change your config options to the ones
specified in this doc you will need to run the migration below.

If you are running remote storage then all previous links will still be accessible but if you want to move the remote
storage documents to the local storage you will run the migration also.

In order to migrate make sure your CKAN instance is running as the script will request the data from the instance using
APIs. You need to run the following on the command line to do the migration:

[ckan -c |ckan.ini| db migrate-filestore

This may take a long time especially if you have a lot of files remotely. If the remote hosting goes down or the job is
interrupted it is saved to run it again and it will try all the unsuccessful ones again.

3.9.4 Custom Internet media types (MIME types)

New in version 2.2.

CKAN uses the default Python library mimetypes to detect the media type of an uploaded file. If some particular format
is not included in the ones guessed by the mimetypes library, a default application/octet-stream value will be
returned.

Users can still register a more appropriate media type by using the mimetypes library. A good way to do so is to use
the IConfigurer interface so the custom types get registered on startup:

import mimetypes
import ckan.plugins as p

class MyPlugin(p.SingletonPlugin):

p.implements(p.IConfigurer)

(continues on next page)

76 Chapter 3. Maintainer’s guide

http://docs.python.org/2/library/mimetypes.html

CKAN documentation, Release 2.11.0a0

(continued from previous page)

def update_config(self, config):
mimetypes.add_type('application/json', '.geojson')

3.10 DataStore extension

The CKAN DataStore extension provides an ad hoc database for storage of structured data from CKAN resources.
Data can be pulled out of resource files and stored in the DataStore.

When a resource is added to the DataStore, you get:

» Automatic data previews on the resource’s page, using for instance the DataTables view extension

e The Data API: search, filter and update the data, without having to download and upload the entire data file
The DataStore is integrated into the CKAN API and authorization system.

The DataStore is generally used alongside the DataPusher, which will automatically upload data to the DataStore from
suitable files, whether uploaded to CKAN’s FileStore or externally linked.

* Relationship to FileStore

* Setting up the DataStore

* DataPusher: Automatically Add Data to the DataStore
* Data Dictionary

* Downloading Resources

e The Data API

» Extending DataStore

3.10.1 Relationship to FileStore

The DataStore is distinct but complementary to the FileStore (see FileStore and file uploads). In contrast to the FileStore
which provides ‘blob’ storage of whole files with no way to access or query parts of that file, the DataStore is like a
database in which individual data elements are accessible and queryable. To illustrate this distinction, consider storing
a spreadsheet file like a CSV or Excel document. In the FileStore this file would be stored directly. To access it you
would download the file as a whole. By contrast, if the spreadsheet data is stored in the DataStore, one would be able
to access individual spreadsheet rows via a simple web API, as well as being able to make queries over the spreadsheet
contents.

3.10. DataStore extension 77

https://github.com/ckan/datapusher

CKAN documentation, Release 2.11.0a0

3.10.2 Setting up the DataStore

1. Enable the plugin

Add the datastore plugin to your CKAN config file:

[ckan .plugins = datastore }

2. Set-up the database

Warning: Make sure that you follow the steps in Ser Permissions below correctly. Wrong settings could lead to
serious security issues.

The DataStore requires a separate PostgreSQL database to save the DataStore resources to.

List existing databases:

[sudo -u postgres psql -1 J

Check that the encoding of databases is UTF8, if not internationalisation may be a problem. Since changing the encod-
ing of PostgreSQL may mean deleting existing databases, it is suggested that this is fixed before continuing with the
datastore setup.

Create users and databases

Tip: If your CKAN database and DataStore databases are on different servers, then you need to create a new database
user on the server where the DataStore database will be created. As in Installing CKAN from source we’ll name the
database user ckan_default:

sudo -u postgres createuser -S -D -R -P -1 ckan_default

Create a database_user called datastore_default. This user will be given read-only access to your DataStore database
in the Set Permissions step below:

sudo -u postgres createuser -S -D -R -P -1 datastore_default
Create the database (owned by ckan_default), which we’ll call datastore_default:

sudo -u postgres createdb -0 ckan_default datastore_default -E utf-8

Set URLs

Now, uncomment the ckan.datastore.write_url and ckan.datastore.read_url lines in your CKAN config file and edit
them if necessary, for example:

ckan.datastore.write_url = postgresql://ckan_default:pass@localhost/datastore_default
ckan.datastore.read_url = postgresql://datastore_default:pass@localhost/datastore_default

Replace pass with the passwords you created for your ckan_default and datastore_default database users.

78 Chapter 3. Maintainer’s guide

mailto:pass@localhost/
mailto:pass@localhost/

CKAN documentation, Release 2.11.0a0

Set permissions

Once the DataStore database and the users are created, the permissions on the DataStore and CKAN database have to
be set. CKAN provides a ckan command to help you correctly set these permissions.

If you are able to use the psql command to connect to your database as a superuser, you can use the datastore
set-permissions command to emit the appropriate SQL to set the permissions.

For example, if you can connect to your database server as the postgres superuser using:

[sudo -u postgres psql

Then you can use this connection to set the permissions:

ckan -c /etc/ckan/default/ckan.ini datastore set-permissions | sudo -u postgres.
—psql --set ON_ERROR_STOP=1

Note: If you performed a package install, you will need to replace all references to ‘ckan -c /etc/ckan/default/ckan.ini
...” with ‘sudo ckan ...’ and provide the path to the config file, e.g.:

[sudo ckan datastore set-permissions | sudo -u postgres psql --set ON_ERROR_STOP=1

If your database server is not local, but you can access it over SSH, you can pipe the permissions script over SSH:

ckan -c /etc/ckan/default/ckan.ini datastore set-permissions | ssh dbserver sudo -u.
—.postgres psql --set ON_ERROR_STOP=1

If you can’t use the psql command in this way, you can simply copy and paste the output of:
ckan -c /etc/ckan/default/ckan.ini datastore set-permissions

into a PostgreSQL superuser console.

3. Test the set-up

The DataStore is now set-up. To test the set-up, (re)start CKAN and run the following command to list all DataStore
resources:

curl -X GET "http://127.0.0.1:5000/api/3/action/datastore_search?resource_id=_table_
—metadata"

This should return a JSON page without errors.

To test the whether the set-up allows writing, you can create a new DataStore resource. To do so, run the following
command:

curl -X POST http://127.0.0.1:5000/api/3/action/datastore_create -H "Authorization:
—{YOUR-API-KEY}" -d '{"resource": {'"package_id": "{PACKAGE-ID}"}, "fields": [{"id": "a
(ﬂll}’ {llidll: llbll}] , llrecordsll: [{ llall: 1’ Ilbll: ”XyZ”}, {Ilall: 2, llbll: llzzzll}]}I

Replace {YOUR-API-KEY} with a valid API key and {PACKAGE-ID} with the id of an existing CKAN dataset.

A table named after the resource id should have been created on your DataStore database. Visiting this URL should
return a response from the DataStore with the records inserted above:

[http ://127.0.0.1:5000/api/3/action/datastore_search?resource_id={RESOURCE_ID}

3.10. DataStore extension 79

CKAN documentation, Release 2.11.0a0

Replace {RESOURCE-ID} with the resource id that was returned as part of the response of the previous API call.

You can now delete the DataStore table with:

curl -X POST http://127.0.0.1:5000/api/3/action/datastore_delete -H "Authorization:
—{YOUR-API-KEY}" -d '{"resource_id": "{RESOURCE-ID}"}'

To find out more about the Data API, see The Data API.

3.10.3 DataPusher: Automatically Add Data to the DataStore

Often, one wants data that is added to CKAN (whether it is linked to or uploaded to the FileStore) to be automatically
added to the DataStore. This requires some processing, to extract the data from your files and to add it to the DataStore
in the format the DataStore can handle.

This task of automatically parsing and then adding data to the DataStore is performed by the DataPusher, a service that
runs asynchronously and can be installed alongside CKAN.

To install this please look at the docs here: https://github.com/ckan/datapusher

Note: The DataPusher only imports the first worksheet of a spreadsheet. It also does not support duplicate column
headers. That includes blank column headings.

3.10.4 Data Dictionary

DataStore columns may be described with a Data Dictionary. A Data Dictionary tab will appear when editing any
resource with a DataStore table. The Data Dictionary form allows entering the following values for each column:

* Type Override: the type to be used the next time DataPusher is run to load data into this column
e Label: a human-friendly label for this column
* Description: a full description for this column in markdown format

The Data Dictionary is set through the API as part of the Fields passed to datastore_create() and returned from
datastore_search().

See also:

For information on customizing the Data Dictionary form, see Customizing the DataStore Data Dictionary Form.

3.10.5 Downloading Resources

A DataStore resource can be downloaded in the CSV file format from {CKAN-URL}/datastore/dump/
{RESOURCE-ID}.

For an Excel-compatible CSV file use {CKAN-URL}/datastore/dump/{RESOURCE-ID}?bom=true.

Other formats supported include tab-separated values (?format=tsv), JSON (?format=json) and XML (?
format=xml). E.g. to download an Excel-compatible tab-separated file use {CKAN-URL}/datastore/dump/
{RESOURCE-ID}?format=tsv&bom=true.

A number of parameters from datastore_search() can be used:
offset, limit, filters, g, full_text, distinct, plain, language, fields, sort

80 Chapter 3. Maintainer’s guide

https://github.com/ckan/datapusher
https://github.com/ckan/datapusher
https://en.wikipedia.org/wiki/Comma-separated_values

CKAN documentation, Release 2.11.0a0

3.10.6 The Data API

The CKAN DataStore offers an API for reading, searching and filtering data without the need to download the entire file
first. The DataStore is an ad hoc database which means that it is a collection of tables with unknown relationships. This
allows you to search in one DataStore resource (a fable in the database) as well as queries across DataStore resources.

Data can be written incrementally to the DataStore through the API. New data can be inserted, existing data can be
updated or deleted. You can also add a new column to an existing table even if the DataStore resource already contains
some data.

Triggers may be added to enforce validation, clean data as it is loaded or even record histories. Triggers are PL/pgSQL
functions that must be created by a sysadmin.

You will notice that we tried to keep the layer between the underlying PostgreSQL database and the API as thin as
possible to allow you to use the features you would expect from a powerful database management system.

A DataStore resource can not be created on its own. It is always required to have an associated CKAN resource. If data
is stored in the DataStore, it can automatically be previewed by a preview extension.

Making a Data API request

Making a Data API request is the same as making an Action API request: you post a JSON dictionary in an HTTP
POST request to an API URL, and the API also returns its response in a JSON dictionary. See the AP/ guide for details.

API reference

Note: Lists can always be expressed in different ways. It is possible to use lists, comma separated strings or single
items. These are valid lists: ['foo', 'bar'], 'foo, bar', "foo", "bar" and 'foo'. Additionally, there are
several ways to define a boolean value. True, on and 1 are all vaid boolean values.

Note: The table structure of the DataStore is explained in Internal structure of the database.

ckanext.datastore.logic.action.datastore_create(context: Context, data_dict: dict[str, Any])
Adds a new table to the DataStore.

The datastore_create action allows you to post JSON data to be stored against a resource. This endpoint also
supports altering tables, aliases and indexes and bulk insertion. This endpoint can be called multiple times to
initially insert more data, add/remove fields, change the aliases or indexes as well as the primary keys.

To create an empty datastore resource and a CKAN resource at the same time, provide resource with a valid
package_id and omit the resource_id.

If you want to create a datastore resource from the content of a file, provide resource with a valid url.
See Fields and Records for details on how to lay out records.
Parameters
» resource_id (string) — resource id that the data is going to be stored against.
» force (bool (optional, default: False))-setto True to editaread-only resource

» resource (dictionary)—resource dictionary thatis passed to resource_create(). Use
instead of resource_id (optional)

3.10. DataStore extension 81

CKAN documentation, Release 2.11.0a0

» aliases (list or comma separated string)— names for read only aliases of the re-
source. (optional)

» fields (1ist of dictionaries) - fields/columns and their extra metadata. (optional)

e delete_fields (bool (optional, default: False))- setto True toremove exist-
ing fields not passed

» records (1ist of dictionaries) - the data, eg: [{“dob”: “2005”, “some_stuff”: [“a”,
“b”]1}] (optional)

» primary_key (1ist or comma separated string) - fields that represent a unique key
(optional)

* indexes (1ist or comma separated string)- indexes on table (optional)

* triggers (list of dictionaries) — trigger functions to apply to this table on up-
date/insert. functions may be created with datastore_function_create(). eg: [{“func-

ELINT3 99, <

tion”: “trigger_clean_reference”}, {“function”: “trigger_check_codes”}]

e calculate_record_count (bool (optional, default: False)) — updates the
stored count of records, used to optimize datastore_search in combination with the fo-
tal_estimation_threshold parameter. If doing a series of requests to change a resource, you
only need to set this to True on the last request.

Please note that setting the aliases, indexes or primary_key replaces the existing aliases or constraints.
Setting records appends the provided records to the resource. Setting fields without including all existing
fields will remove the others and the data they contain.

Results:

Returns
The newly created data object, excluding records passed.

Return type
dictionary

See Fields and Records for details on how to lay out records.

ckanext.datastore.logic.action.datastore_run_triggers(context: Context, data_dict: dict[str, Any]) —

int

update each record with trigger
The datastore_run_triggers API action allows you to re-apply existing triggers to an existing DataStore resource.

Parameters
resource_id (string) — resource id that the data is going to be stored under.

Results:

Returns
The rowcount in the table.

Return type
int

ckanext.datastore.logic.action.datastore_upsert (context: Context, data_dict: dict[str, Any])

Updates or inserts into a table in the DataStore

The datastore_upsert API action allows you to add or edit records to an existing DataStore resource. In order
for the upsert and update methods to work, a unique key has to be defined via the datastore_create action. The
available methods are:

82

Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

upsert
Update if record with same key already exists, otherwise insert. Requires unique key or _id field.

insert
Insert only. This method is faster that upsert, but will fail if any inserted record matches an existing one.
Does not require a unique key.

update
Update only. An exception will occur if the key that should be updated does not exist. Requires unique key
or _id field.
Parameters

» resource_id (string) — resource id that the data is going to be stored under.

» force (bool (optional, default: False))-setto True to editaread-only resource

» records (list of dictionaries) — the data, eg: [{“dob”: 2005, “some_stuff’:
[“a”,’b”]}] (optional)

* method (string) — the method to use to put the data into the datastore. Possible options
are: upsert, insert, update (optional, default: upsert)

* calculate_record_count (bool (optional, default: False)) — updates the
stored count of records, used to optimize datastore_search in combination with the to-
tal_estimation_threshold parameter. If doing a series of requests to change a resource, you
only need to set this to True on the last request.

e dry_run (bool (optional, default: False)) - setto True to abort transaction in-
stead of committing, e.g. to check for validation or type errors.

Results:
Returns
The modified data object.
Return type
dictionary

ckanext.datastore.logic.action.datastore_info(context: Context, data_dict: dict[str, Any]) — dict[str,
Any]

Returns detailed metadata about a resource.

Parameters
resource_id (string) — id or alias of the resource we want info about.

Results:

Return type
dictionary

Returns
meta: resource metadata dictionary with the following keys:
* aliases - aliases (views) for the resource
* count - row count
 db_size - size of the datastore database (bytes)
* id - resource id (useful for dereferencing aliases)

* idx_size - size of all indices for the resource (bytes)

3.10. DataStore extension 83

CKAN documentation, Release 2.11.0a0

* size - size of resource (bytes)
* table_type - BASE TABLE, VIEW, FOREIGN TABLE or MATERIALIZED VIEW

fields: A list of dictionaries based on Fields, with an additional nested dictionary per field called
schema, with the following keys:

* native_type - native database data type
* index_name

e is_index

* notnull

* uniquekey

ckanext.datastore.logic.action.datastore_delete(context: Context, data_dict: dict[str, Any])
Deletes a table or a set of records from the DataStore. (Use datastore_records_delete() to keep tables

intact)
Parameters

» resource_id (string) — resource id that the data will be deleted from. (optional)

» force (bool (optional, default: False))-setto True to editaread-only resource

» filters (dictionary)— Filters to apply before deleting (eg { “name”: “fred”}). If missing
delete whole table and all dependent views. (optional)

» calculate_record_count (bool (optional, default: False)) — updates the
stored count of records, used to optimize datastore_search in combination with the fo-
tal_estimation_threshold parameter. If doing a series of requests to change a resource, you
only need to set this to True on the last request.

Results:
Returns
Original filters sent.
Return type

dictionary

ckanext.datastore.logic.action.datastore_records_delete(context: Context, data_dict: dict[str, Any])

Deletes records from a DataStore table but will never remove the table itself.
Parameters
» resource_id (string) — resource id that the data will be deleted from. (required)
» force (bool (optional, default: False))-setto True to editaread-only resource

» filters (dictionary) — Filters to apply before deleting (eg {“name”: “fred”}). If {}
delete all records. (required)

e calculate_record_count (bool (optional, default: False)) — updates the
stored count of records, used to optimize datastore_search in combination with the fo-
tal_estimation_threshold parameter. If doing a series of requests to change a resource, you
only need to set this to True on the last request.

Results:

Returns
Original filters sent.

84 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Return type
dictionary

ckanext.datastore.logic.action.datastore_search(context: Context, data_dict: dict[str, Any])

Search a DataStore resource.

The datastore_search action allows you to search data in a resource. By default 100 rows are returned - see the
limit parameter for more info.

A DataStore resource that belongs to a private CKAN resource can only be read by you if you have access to the
CKAN resource and send the appropriate authorization.

Parameters

resource_id (string) — id or alias of the resource to be searched against

[IP%1]

filters (dictionary) — Filters for matching conditions to select, e.g {“keyl”: “a”,
“key2”: “b”} (optional)

q (string or dictionary) — full text query. If it’s a string, it’ll search on all fields on
each row. If it’s a dictionary as {“key1”: “a”, “key2”: “b”}, it’ll search on each specific field
(optional)

full_text (string) — full text query. It search on all fields on each row. This should be
used in replace of q when performing string search accross all fields

distinct (bool) — return only distinct rows (optional, default: false)
plain (bool) — treat as plain text query (optional, default: true)
language (string) — language of the full text query (optional, default: english)

limit (int) — maximum number of rows to return (optional, default: 100, unless set in the
site’s configuration ckan.datastore.search.rows_default, upper limit: 32000 unless
set in site’s configuration ckan.datastore. search.rows_max)

offset (int) — offset this number of rows (optional)

fields (list or comma separated string) — fields to return (optional, default: all
fields in original order)

sort (string)— comma separated field names with ordering e.g.: “fieldnamel, fieldname2
desc nulls last”

include_total (bool) - True to return total matching record count (optional, default: true)

total_estimation_threshold (int or None) — If “include_total” is True and “to-
tal_estimation_threshold” is not None and the estimated total (matching record count) is
above the “total_estimation_threshold” then this datastore_search will return an estimate of
the total, rather than a precise one. This is often good enough, and saves computationally
expensive row counting for larger results (e.g. >100000 rows). The estimated total comes
from the PostgreSQL table statistics, generated when Express Loader or DataPusher finishes
aload, or by autovacuum. NB Currently estimation can’t be done if the user specifies ‘filters’
or ‘distinct’ options. (optional, default: None)

records_format (controlled list) - the format for the records return value: ‘objects’
(default) list of {fieldnamel: valuel, ...} dicts, ‘lists’ list of [valuel, value2, ...] lists,
‘csv’ string containing comma-separated values with no header, ‘tsv’ string containing tab-
separated values with no header

Setting the plain flag to false enables the entire PostgreSQL full text search query language.

A listing of all available resources can be found at the alias _table_metadata.

3.10. DataStore extension

85

http://www.postgresql.org/docs/9.1/static/datatype-textsearch.html#DATATYPE-TSQUERY

CKAN documentation, Release 2.11.0a0

If you need to download the full resource, read Downloading Resources.
Results:
The result of this action is a dictionary with the following keys:

Return type
A dictionary with the following keys

Parameters
e fields (1ist of dictionaries) - fields/columns and their extra metadata
» offset (int) — query offset value

e limit (int)— queried limit value (if the requested 1imit was above the ckan.datastore.
search.rows_max value then this response 1limit will be set to the value of ckan.
datastore.search.rows_max)

o filters (1ist of dictionaries) - query filters

* total (int) — number of total matching records

* total_was_estimated (bool) — whether or not the total was estimated

» records (depends on records_format value passed) — list of matching results

ckanext.datastore.logic.action.datastore_search_sql (context: Context, data_dict: dict[str, Any])
Execute SQL queries on the DataStore.

The datastore_search_sql action allows a user to search data in a resource or connect multiple resources with
join expressions. The underlying SQL engine is the PostgreSQL engine. There is an enforced timeout on SQL
queries to avoid an unintended DOS. The number of results returned is limited to 32000, unless set in the site’s
configuration ckan.datastore.search.rows_max Queries are only allowed if you have access to the all the
CKAN resources in the query and send the appropriate authorization.

Note: This action is not available by default and needs to be enabled with the ckan.datastore.sqlsearch.enabled
setting.

Note: When source data columns (i.e. CSV) heading names are provided in all UPPERCASE you need to
double quote them in the SQL select statement to avoid returning null results.

Parameters
sql (string) — a single SQL select statement
Results:
The result of this action is a dictionary with the following keys:

Return type
A dictionary with the following keys

Parameters
e fields (1ist of dictionaries) - fields/columns and their extra metadata

» records (1ist of dictionaries) - list of matching results

86 Chapter 3. Maintainer’s guide

http://www.postgresql.org/docs/9.1/interactive/

CKAN documentation, Release 2.11.0a0

e records_truncated (bool) — indicates whether the number of records returned was lim-
ited by the internal limit, which is 32000 records (or other value set in the site’s configuration
ckan.datastore.search.rows_max). If records are truncated by this, this key has value
True, otherwise the key is not returned at all.

ckanext.datastore.logic.action.set_datastore_active_flag(context: Context, data_dict: dict(str,
Any], flag: bool)

Set appropriate datastore_active flag on CKAN resource.
Called after creation or deletion of DataStore table.

ckanext.datastore.logic.action.datastore_function_create(context: Context, data_dict: dict(str,
Any])

Create a trigger function for use with datastore_create
Parameters
e name (string) — function name
» or_replace (bool) — True to replace if function already exists (default: False)
» rettype (string) — set to ‘trigger’ (only trigger functions may be created at this time)
» definition (string) — PL/pgSQL function body for trigger function

ckanext.datastore.logic.action.datastore_function_delete(context: Context,data_dict: dict/str,
Any])

Delete a trigger function

Parameters
name (string) — function name

Fields

Fields define the column names and the type of the data in a column. A field is defined as follows:

{
"id": # the column name (required)
"type": # the data type for the column
"info": {
"label": # human-readable label for column
"notes": # markdown description of column
"type_override": # type for datapusher to use when importing data
free-form user-defined values

values defined and validated with IDataDictionaryForm

Field types not provided will be guessed based on the first row of provided data. Set the types to ensure that future
inserts will not fail because of an incorrectly guessed type. See Field types for details on which types are valid.

See also:

For more on custom field values and customizing the Data Dictionary form, see Customizing the DataStore Data
Dictionary Form.

3.10. DataStore extension 87

CKAN documentation, Release 2.11.0a0

Records

A record is the data to be inserted in a DataStore resource and is defined as follows:

{
column_1_id: value_1,
columd_2_id: value_2,
}
Example:
[
{
"code_number": 10,
"description": "Submitted successfully"
3,
{
"code_number": 42,
"description": "In progress"
}
]
Field types

The DataStore supports all types supported by PostgreSQL as well as a few additions. A list of the PostgreSQL types
can be found in the type section of the documentation. Below you can find a list of the most common data types. The
json type has been added as a storage for nested data.

In addition to the listed types below, you can also use array types. They are defines by prepending a _ or appending []
or [n] where n denotes the length of the array. An arbitrarily long array of integers would be defined as int[].

text
Arbitrary text data, e.g. Here's some text.
json
Arbitrary nested json data, e.g {"foo": 42, "bar": [1, 2, 3]}. Please note that this type is a custom
type that is wrapped by the DataStore.
date
Date without time, e.g 2012-5-25.
time
Time without date, e.g 12:42.
timestamp
Date and time, e.g 2012-10-01T02:43Z.
int
Integer numbers, e.g 42, 7.
float
Floats, e.g. 1.61803.
bool

Boolean values, e.g. true, 0

88 Chapter 3. Maintainer’s guide

http://www.postgresql.org/docs/9.1/static/datatype.html

CKAN documentation, Release 2.11.0a0

You can find more information about the formatting of dates in the date/time types section of the PostgreSQL docu-
mentation.

Filters

Filters define the matching conditions to select from the DataStore. A filter is defined as follows:

{
"resource_id": # the resource ID (required)
"filters": {
column name: # field value
column name: # List of field values
other user-defined filters

Filters must be supplied as a dictonary. Filters are used as WHERE statements. The filters have to be valid key/value
pairs. The key must be a valid column name and the value must match the respective column type. The value may be
provided as a List of multiple matching values. See Field types for details on which types are valid.

Example (single filter values, used as WHERE = statements):

{
"resource_id": "5f38da22-7d55-4312-81ce-17f1a9e84788",
"filters": {
"name": "Fred",
"dob": "1994-7-07"
}
}

Example (multiple filter values, used as WHERE IN statements):

{
"resource_id": "5f38da22-7d55-4312-81ce-17f1a9e84788",
"filters": {
"name": ["Fred", "Jones"],
"dob": ["1994-7-07", "1992-7-27"]
}
}

Resource aliases

A resource in the DataStore can have multiple aliases that are easier to remember than the resource id. Aliases can
be created and edited with the datastore_create () API endpoint. All aliases can be found in a special view called
_table_metadata. See Internal structure of the database for full reference.

3.10. DataStore extension 89

http://www.postgresql.org/docs/9.1/static/datatype-datetime.html
http://www.postgresql.org/docs/9.1/static/datatype-datetime.html

CKAN documentation, Release 2.11.0a0

Comparison of different querying methods

The DataStore supports querying with two API endpoints. They are similar but support different features. The following
list gives an overview of the different methods.

datastore_search() datastore_search_sql()

Ease of use Easy Complex
Flexibility Low High
Query language Custom (JSON) SQL
Join resources No Yes

Internal structure of the database

The DataStore is a thin layer on top of a PostgreSQL database. Each DataStore resource belongs to a CKAN resource.
The name of a table in the DataStore is always the resource id of the CKAN resource for the data.

As explained in Resource aliases, a resource can have mnemonic aliases which are stored as views in the database.

All aliases (views) and resources (tables respectively relations) of the DataStore can be found in a special view
called _table_metadata. To access the list, open http://{YOUR-CKAN-INSTALLATION}/api/3/action/
datastore_search?resource_id=_table_metadata.

_table_metadata has the following fields:
_id
Unique key of the relation in _table_metadata.

alias_of
Name of a relation that this alias point to. This field is null iff the name is not an alias.

name
Contains the name of the alias if alias_of is not null. Otherwise, this is the resource id of the CKAN resource for
the DataStore resource.

oid
The PostgreSQL object ID of the table that belongs to name.

3.10.7 Extending DataStore

Starting from CKAN version 2.7, backend used in DataStore can be replaced with custom one. For this purpose,
custom extension must implement ckanext.datastore.interfaces.IDatastoreBackend, which provides one method - reg-
ister_backends. It should return dictonary with names of custom backends as keys and classes, that represent those
backends as values. Each class supposed to be inherited from ckanext.datastore.backend.DatastoreBackend.

Note: Example of custom implementation can be found at ckanext.example_idatastorebackend

ckanext.datastore.backend.get_all_resources_ids_in_datastore() — list[str]
Helper for getting id of all resources in datastore.

Uses get_all_ids of active datastore backend.

exception ckanext.datastore.backend.DatastoreException

90 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

class ckanext.datastore.backend.DatastoreBackend

Base class for all datastore backends.

Very simple example of implementation based on SQLite can be found in ckanext.example_idatastorebackend.
In order to use it, set datastore.write_url to ‘example-sqlite:////tmp/database-name-on-your-choice’

Prop _backend
mapping(schema, class) of all registered backends

Prop _active_backend
current active backend

classmethod register_backends()
Register all backend implementations inside extensions.
classmethod set_active_backend(config: CKANConfig)

Choose most suitable backend depending on configuration

Parameters
config — configuration object

Return type
ckan.common.CKANConfig

classmethod get_active_backend()
Return currently used backend

configure(config: CKANConfig)

Configure backend, set inner variables, make some initial setup.

Parameters
config — configuration object

Returns
config

Return type
CKANConfig

create(context: Context, data_dict: dict[str, Any], plugin_data: dict[int, dict[str, Any]]) — Any

Create new resourct inside datastore.
Called by datastore_create.

Parameters
data_dict — See ckanext.datastore.logic.action.datastore_create

Returns
The newly created data object

Return type
dictonary

upsert (context: Context, data_dict: dict[str, Any]) — Any
Update or create resource depending on data_dict param.

Called by datastore_upsert.

Parameters
data_dict — See ckanext.datastore.logic.action.datastore_upsert

Returns
The modified data object

3.10. DataStore extension 91

CKAN documentation, Release 2.11.0a0

Return type
dictonary

delete(context: Context, data_dict: dict[str, Any]) — Any

Remove resource from datastore.
Called by datastore_delete.

Parameters
data_dict — See ckanext.datastore.logic.action.datastore_delete

Returns
Original filters sent.

Return type
dictonary

search (context: Context, data_dict: dict[str, Any]) — Any

Base search.
Called by datastore_search.
Parameters

e data_dict — See ckanext.datastore.logic.action.datastore_search
e fields (1ist of dictionaries) - fields/columns and their extra metadata
» offset (int) — query offset value
e limit (int) — query limit value
e filters (1ist of dictionaries) - query filters
 total (int) — number of total matching records
e records (list of dictionaries) - list of matching results

Return type
dictonary with following keys

search_sql (context: Context, data_dict: dict[str, Any]) — Any
Advanced search.

Called by datastore_search_sql. :param sql: a single seach statement :type sql: string

Return type
dictonary

Parameters
e fields (1ist of dictionaries) - fields/columns and their extra metadata
e records (1ist of dictionaries) - list of matching results

resource_exists(id: sir) — bool

Define whether resource exists in datastore.

resource_fields(id: str) — Any

Return dictonary with resource description.
Called by datastore_info. :returns: A dictionary describing the columns and their types.

resource_info(id: str) — Any

Return DataDictonary with resource’s info - #3414

92 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

resource_id_from_alias(alias: str) — Any

Convert resource’s alias to real id.

Parameters
alias (string) —resource’s alias or id

Returns
real id of resource

Return type
string

get_all_ids() — list[str]
Return id of all resource registered in datastore.

Returns
all resources ids

Return type
list of strings

create_function(*args: Any, **kwargs: Any) — Any

Called by datastore_function_create action.

drop_function(*args: Any, **kwargs: Any) — Any

Called by datastore_function_delete action.

3.11 Table Designer extension

New in version 2.11.
The CKAN Table Designer extension is a data ingestion and enforced-validation tool that:
* uses the CKAN DataStore database as the primary data source
* allows rows to be updated without re-loading all data
* builds data schemas with custom types and constraints in the Data Dictionary form
* enables linked data with simple and composite primary keys
* enforces validation with PostgreSQL triggers for almost any business logic desired
» works with existing DataStore APIs for integration with other applications:
— datastore_create() to create or update the data schema
— datastore_upsert() to create or update rows
— datastore_records_delete() to delete rows
* expands resource DataStore API documentation for updating and deleting with examples from live data
e creates a DataTuables view for interactive searching and selection of existing rows
e provides web forms for:
— creating or updating individual rows with interactive validation
— deleting one or more existing rows with confirmation
* integrates with ckanext-excelforms to use a spreadsheet application for:

— bulk uploading thousands of rows

3.11. Table Designer extension 93

https://github.com/ckan/ckanext-excelforms

CKAN documentation, Release 2.11.0a0

— batch updating hundreds of existing rows
— immediate validation/required field feedback while entering data
— verifying data against validation rules server-side without uploading

» works with ckanext-dsaudit to track changes to rows and data schemas

3.11.1 Table Designer vs. resource uploads and links

With uploaded and linked resources the DataStore may contain a copy of the original file data. This copy is deleted
and re-loaded when the original file changes. Often there is no data schema other than field types that are detected or
overridden by the user. If the original data contains an incompatible type or the type is detected incorrectly the data
loading process will fail leaving the DataStore empty.

Table Designer instead uses the CKAN DataStore as the primary source of data.

Rows can be individually created, updated and removed. Type validation and constraints are enforced so bad data can’t
be mixed with good data. Primary keys are guaranteed to be unique enabling links between resources.

This makes Table Designer resources well suited for data that is incrementally updated such as reference data, vocab-
ularies and time series data.

3.11.2 Setting up Table Designer

1. Enable the plugin

Add the tabledesigner plugin to your CKAN config file before the datatables_view and datastore plugins:

[ckan.plugins = ... tabledesigner datatables_view datastore ...]

2. Set-up DataStore

If you haven’t already, follow the instructions in Setting up the DataStore

3.11.3 Creating a Table Designer resource

When creating a resource select “Data: Table Designer”. This will automatically create an empty DataStore table and
a DataTables view.

94 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-dsaudit

CKAN documentation, Release 2.11.0a0

& .admin oo B

N c ka n Datasets Organizations Groups About

A / Organizations / one / Table Designer Example / Edit / Add New Resource

@ What's a resource?

A resource can be any file or link to a file

containing useful data.
Data:

& Upload & Link ¥ Table Desigrf

Name: Create a custom table for your data

eg. January 2011 Gold Prices

Description:

Some useful notes about the data

You can use Markdown formatting here

Format:

an CQV YMI Ar IQON

After saving your resource navigate to the Data Dictionary form to start creating fields.

&5 Dataset 22 Groups © Activity Stream # Manage

Table Designer Example

Data and Resources

3w Example Table

Additional Info [= Preview

#° Edit resource

Field Value
</> Data Dictionary
State active = Views
Last Updated February 21, 2024, 5:23 PM (UTC-05:00)
Created February 20, 2024, 4:33 PM (UTC-05:00)

3.11. Table Designer extension 95

CKAN documentation, Release 2.11.0a0

3.11.4 Creating fields with the Data Dictionary
A newly created resource will have no fields defined. Use the “Add Field” button in the Data Dictionary form to add
fields for your data.

Customize each field with an ID, an obligation, a label and description.

ID

All fields must have an ID. The ID is used as the column name in the DataStore database. PostgreSQL requires that
column names start with a letter and be no longer than 31 characters.

The field ID is used to identify fields in the API and when exporting data in CSV or other formats.

We recommend using a single convention for all IDs e.g. lowercase_with_underscores to simplify accessing data
from external systems.

Obligation

The field obligation defaults to optional.

Optional
no restrictions

Required
may not be NULL or blank

Primary Key
required and guaranteed unique within the table

When multiple fields are marked as primary keys the combination of values in each row is used to determine uniqueness.

Label

The field label is a human-friendly version of the ID, used when displaying data in the data table preview, the data
dictionary, in forms and in Excel templates.

Description

The field description is markdown displayed in the data dictionary, as help text forms and in Excel templates.

3.11.5 Field Types

Table Designer offers some common fields types by default. To customize the types available see Customizing Table
Designer Column Types and Constraints.

96 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

#* Edit resource </> Data Dictionary = Views

+ Add field ~

Text
Choice
| »
Email Address
URI
Universally unique identifier (UUID)

Numeric

Integer

Boolean

JSON

Date

Timestamp

Text

Text fields contain a string of any length.

A pattern constraint is available to restrict text field using a regular expression. When a pattern is changed the new
pattern applies to all new rows and rows being updated, not existing rows.

When used as part of a primary key, text values will have surrounding whitespace removed automatically.

3.11. Table Designer extension 97

CKAN documentation, Release 2.11.0a0

Choice

Choice fields are text fields that limit the user to selecting one of a set of options defined.
Enter the options into the Choices box, one option per line.

If an option is removed from the Choices box that exists in the data, the next time that row is updated it will need to be
changed to one of the current options for the change to be accepted.

Email Address

Email Address fields are text fields limited to a single valid email address according to https://html.spec.whatwg.org/
#valid-e-mail-address

URI

URI is a text field used for links (URLSs) or other Uniform Resource Identifier values

Universally unique identifier

A UUID field is a 128-bit value written as a sequence of 32 hexadecimal digits in groups separated by hyphens.

Values are always returned in standard form, e.g.:

[a@eebc99—9c®b—4ef8—bb6d—6bb9bd38®a11

Numeric

Numeric fields are exact decimal values with up to 131072 digits before the decimal point and 16383 digits after the
decimal point.

Minimum and maximum constraints may be set to limit the range of values accepted, e.g. setting the minimum to O
would prevent negative numbers from being entered.

Integer

Integer fields are 64-bit integer values with a range of -9223372036854775808 to +9223372036854775807

Minimum and maximum constraints may be set to limit the range of values accepted, e.g. setting the minimum to O
would prevent negative numbers from being entered.

Boolean

Boolean fields may be set to either TRUE or FALSE.

98 Chapter 3. Maintainer’s guide

https://html.spec.whatwg.org/#valid-e-mail-address
https://html.spec.whatwg.org/#valid-e-mail-address

CKAN documentation, Release 2.11.0a0

JSON

JSON fields may contain any valid JSON and will retain the whitespace and order of keys passed.

Date

Date fields accept any YYYY-MM-DD value from 4713 BCE to 5874897 CE.

Minimum and maximum constraints may be set to limit the range of values accepted.

Timestamp

Timestamp fields accept any YYYY-MM-DD hh:mm:ss.ssssss value from 4713 BCE to 294276 CE.

Minimum and maximum constraints may be set to limit the range of values accepted.

3.11.6 Creating and updating rows with the web form

Table Designer offers a web form for interactively creating or updating individual rows.

The fields you define generate the web forms. Labels for fields are shown instead of ids when given, and field descrip-
tions are displayed as help text and may include markdown with links, tables or other information.

Edit row

Date of Observation:

2023-11-26 (]

@ Recording of bicycles for this date from 00:00 to 23:59:59 local time

Location of Counter:

west

@ Bicycle counter that took the recording

Number of Bicycles:

243

© The number of bicycles that passed the counter on this date

The field type determines the input widget shown for each field. For custom types and input widgets see: Customizing
Table Designer Column Types and Constraints

3.11. Table Designer extension 99

https://www.json.org/

CKAN documentation, Release 2.11.0a0

Creating rows

Below the data table preview click the “ Add row” button to create a row.

Updating rows

In the data table preview select a row by clicking on it, then click the “Edit row” button above the table.

Validation errors

Errors will appear on the form after clicking “Save” if any values fail validation or cause conflicts with existing rows.

Edit row

* Date of Observation:

2023-11-26 (]

©® Recording of bicycles for this date from 00:00 to 23:59:59 local time

* Location of Counter:

Primary key must not be empty

@ Bicycle counter that took the recording

“ Number of Bicycles:

Below minimum: "0"

|

@ The number of bicycles that passed the counter on this date

Correct the highlighted errors and click “Save” again.

3.11.7 Creating and updating rows with ckanext-excelforms

ckanext-excelforms is an extension for Table Designer that allows using Excel templates to edit hundreds or create
thousands of rows at a time. Install ckanext-excelforms and add excelforms to your list of plugins before the
tabledesigner plugin:

[ckan.plugins = ... excelforms tabledesigner datatables_view datastore ...

100 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-excelforms

CKAN documentation, Release 2.11.0a0

Creating and updating rows

Below the data preview under “Table Designer” click the “Excel template” button to download a clean template x1sx
file. Open the template in Excel, LibreOffice, Google Docs or other Excel-compatible spreadsheet application.

AutoSave template_3147bbc5-8da2-4aa0-b7fc-1025440e0e74.xlsx P search
File Home Insert Draw Page Layout Formulas Data Review View Automate Help

c6 ~ | fx

The template header (here “Bicycle Counters™) is set based on the resource name. Each column corresponds to one of
the fields defined. Enter data into the rows starting right of the “”.

Note: Use “paste special: values only” when pasting data into the template or the error highlighting and column
formatting will be removed.

Click one of the column titles or the “reference” sheet to jump to a reference tab with information about the field
including descriptions and constraints. Click on the field name in the reference to jump back to the data.

3.11. Table Designer extension 101

CKAN documentation, Release 2.11.0a0

i il Il il el

10
1)
12|
13

14
15
16
17

18

19
20|
21|
22|
23

24

. [
3

1 Date of Observation (Primary Key)

ID observation

Description Recording of bicycles for this date from 00:00 to 23:59:59 local time
Format Date

Minimum 2023-11-24

2 Location of Counter (Primary Key)
ID location

Description Bicycle counter that took the recording
Format Choice

Values

west
north
central

3 Number of Bicycles (Required)

ID count

Description The number of bicycles that passed the counter on this date
Format Integer

Minimum 0

Required cells missing data will appear with a blue background while entering data. Cells with invalid values will
appear with a red background.

102

Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

A B C D E F

Bicycle Counters

Date of Observation Location of Counter

Number of Bicycles

BN

14 2023-11-24 central 497
15 2023-11-25 central 501
16 2023-11-26 central 476
17 2023-11-27 central 399
18 2023-11-28 central 443
19 2023-11-29 central 480
20 2023-11-30 central 478
21 2023-12-01 central 493
2| }
23 2023-11-25 north

24I 2023-11-26 north

25 2023-11-27 north

26 2023-11-28 north

27 2023-11-29

28 2023-11-30 north

Duplicate primary keys (row 22), values outside the range constraints (row 24), values not present in choices (row 27)
and values in an invalid format (row 29) are highlighted as errors.

Click the thin border cells along the left (column A) or along the top under the field names (row 3) to jump directly
to the next error or missing value in that row/column. This is useful when navigating a large template to quickly find
errors or missing values.

Once errors are corrected, save the template and upload it with the file selection input next to the “Excel template”
button below the preview.

Click “Submit” to upload the data or “Check for Errors” to validate the data server-side without creating or updating
TOWS.

Note: If you have primary key fields defined, rows submitted here will replace values for rows with the same primary
key in the DataStore database.

3.11. Table Designer extension 103

CKAN documentation, Release 2.11.0a0

Editing existing rows

Select the rows to edit in the data table preview then click “Edit in Excel” above the table to download an Excel template
populated with data.

Show 20 v entries: Editin Excel |"EditRow " Delete Rows [l--IEENL BN SEISINEF 3
-
Showing 1 to 8 of 8 entries (filtered from 24 total entries) 4 rows selected @ Search:
_id 4 Date of Observation @ Location of Counter @ Number of Bicycles @
pe central

‘ 9 2023-11-24 central 497

0 | 2023-11-25

ral

2023-11-28 central 443

14 2023-11-29 central 480
15 2023-11-30 central 478
16 2023-12-01 central 493

This template is just like the clean one above except:
* the template includes a read-only _id column at the left
* the template has no additional rows for adding data
* only the selected rows may be edited

Make changes to the rows in the template then save it and upload it with the file selection input next to the “Excel
template” button below the preview. Click “Submit”.

3.11.8 Deleting rows

Select one or more rows in the data table preview then click “Delete rows” above the table.

104 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Delete Rows

Delete 5 rows?

observation location count
2023-11-28 west 174
2023-11-24 central 497
2023-11-30 central 478
2023-12-01 central 493
2023-11-24 north 19

Click “Delete” to confirm deletion of the data shown.

3.11.9 Tracking changes with ckanext-dsaudit

Use ckanext-dsaudit with the activity plugin to track changes to Table Designer schemas and data inserted and deleted
from DataStore resources. Install ckanext-dsaudit and add dsaudit to your list of plugins before the activity

plugin:

[ckan.plugins = ... dsaudit activity ...

Data Dictionary changes

ckanext-dsaudit takes a snapshot of the Data Dictionary any time fields are added or changed and adds it to the

dataset activity feed.

3.11. Table Designer extension

105

https://github.com/ckan/ckanext-dsaudit

CKAN documentation, Release 2.11.0a0

@

Data Dictionary

1. Date of Observation
ID

Type

Label

Description

Obligation

Minimum

2. Location of Gounter
ID

Type

Label

Description

Obligation

Choices

3. Number of Bicycles

9 minutes ago

Date

observation
Date

Date of Observation

admin redefined datastore table for resource d095b51f-9e31-408f-8c2f-f7cdbd22cf42

Recording of bicycles for this date from 00:00 to 23:59:59 local time

Primary key
2023-11-24

Choice

location
Choice
Location of Counter

Bicycle counter that took the recording

Primary key

Code

west
north

central

Integer

106

Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Inserted rows

ckanext-dsaudit captures the total number of rows inserted or updated and a sample of the values inserted and adds
them to the dataset activity feed.

° admin inserted 7 records in datastore resource d095b51f-9e31-408f-8c2f-f7cdbd22cf42
observation location count
2023-11-24 central 497
2023-11-25 central 501
2023-11-26 central 476
2023-11-27 central 399
2023-11-30 central 478
2023-12-01 central 493
2023-11-24 north 19

Deleted rows

ckanext-dsaudit captures the total number of rows deleted and a sample of the values deleted and adds them to the
dataset activity feed.

e admin deleted 3 records from datastore resource d095b51-9e31-408f-8c2f-f7cdbd22cf42

_id observation location count
1 2023-11-24 central 480

2 2023-11-25 central 510

7 2023-11-24 north 21

6 seconds ago

3.11. Table Designer extension 107

CKAN documentation, Release 2.11.0a0

3.12 Apps & Ideas

The old “Apps & Ideas” functionality to allow users to provide information on apps, ideas, visualizations, articles etc
that are related to a specific dataset has been moved to a separate extension: ckanext-showcase.

3.13 Tag Vocabularies

New in version 1.7.
CKAN sites can have tag vocabularies, which are a way of grouping related tags together into custom fields.

For example, if you were making a site for music datasets. you might use a tag vocabulary to add two fields Genre and
Composer to your site’s datasets, where each dataset can have one of the values Avant-Garde, Country or Jazz in its
genre field, and one of the values Beethoven, Wagner, or Tchaikovsky in its composer field. In this example, genre and
composer would be vocabularies and the values would be tags:

* Vocabulary: Genre
— Tag: Avant-Garde
— Tag: Country
— Tag: Jazz

* Vocabulary: Composer
— Tag: Beethoven
— Tag: Wagner
— Tag: Tchaikovsky

Ofcourse, you could just add Avant-Garde, Beethoven, etc. to datasets as normal CKAN tags, but using tag vocabularies
lets you define Avant-Garde, Country and Jazz as genres and Beethoven, Wagner and Tchaikovsky as composers, and
lets you enforce restrictions such as that each dataset must have a genre and a composer, and that no dataset can have
two genres or two composers, etc.

Another example use-case for tag vocabularies would be to add a Country Code field to datasets defining the geo-
graphical coverage of the dataset, where each dataset is assigned a country code such as en, fr, de, etc. See ckanext/
example_idatasetform for a working example implementation of country codes as a tag vocabulary.

3.13.1 Properties of Tag Vocabularies

* A CKAN website can have any number of vocabularies.
» Each vocabulary has an ID and name.

 Each tag either belongs to a vocabulary, or can be a free tag that doesn’t belong to any vocabulary (i.e. a normal
CKAN tag).

A dataset can have more than one tag from the same vocabulary, and can have tags from more than one vocabulary.

108 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-showcase

CKAN documentation, Release 2.11.0a0

3.13.2 Using Vocabularies

To add a tag vocabulary to a site, a CKAN sysadmin must:
1. Call the vocabulary_create() action of the CKAN API to create the vocabulary and tags. See API guide.

2. Implement an IDatasetForm plugin to add a new field for the tag vocabulary to the dataset schema. See Ex-
tending guide.

3. Provide custom dataset templates to display the new field to users when adding, updating or viewing datasets in
the CKAN web interface. See Theming guide.

See ckanext/example_idatasetform for a working example of these steps.

3.14 Form Integration

CKAN allows you to integrate its Edit Dataset and New Dataset forms into an external front-end. To that end, CKAN
also provides a simple way to redirect these forms back to the external front-end upon submission.

3.14.1 Redirecting CKAN Forms

It is obviously simple enough for an external front-end to link to CKAN’s Edit Dataset and New Dataset forms, but once
the forms are submitted, it would be desirable to redirect the user back to the external front-end, rather than CKAN’s
dataset read page.

This is achieved with a parameter to the CKAN URL. The ‘return URL’ can be specified in two places:
1. Passed as a URL-encoded value with the parameter return_to in the link to CKAN’s form page.
2. Specified in the CKAN config keys package_new_return_url and package_edit_return_url.

(If the ‘return URL is supplied in both places, then the first takes precedence.)

Since the ‘return URL’ may need to include the dataset name, which could be changed by the user, CKAN replaces a
known placeholder <NAME> with this value on redirect.

Note: Note that the downside of specifying the ‘return URL’ in the CKAN config is that the CKAN web interface
becomes less usable on its own, since the user is hampered by the redirects to the external interface.

Example

An external front-end displays a dataset ‘ontariolandcoverv100’ here:

[http ://datadotgc.ca/dataset/ontariolandcoverv100 J

It displays a link to edit this dataset using CKAN’s form, which without the redirect would be:

[http ://ca.ckan.net/dataset/edit/ontariolandoverv100 }

At first, it may seem that the return link should be http://datadotgc.ca/dataset/ontariolandcoverv100. But
when the user edits this dataset, the name may change. So the return link needs to be:

[http://datadotgc .ca/dataset/<NAME> J

3.14. Form Integration 109

CKAN documentation, Release 2.11.0a0

And this is URL-encoded to become:

[http%SA%ZF%ZFdatadotgc . ca%2Fdataset%2F%3CNAME%3E]

So, in summary, the edit link becomes:

—%2Fdataset%2F%3CNAME%3E

http://ca.ckan.net/dataset/edit/ontariolandoverv1®0?return_to=http%3A%2F%2Fdatadotgc.ca ’

During editing the dataset, the user changes the dataset name to canadalandcover, presses ‘preview’ and finally ‘com-
mit’. The user is now redirected back to the external front-end at:

[http ://datadotgc.ca/dataset/canadalandcover]

The same functionality could be achieved by this line in the config file (ca.ckan.net.ini):

[app:main]
package_edit_return_url = http://datadotgc.ca/dataset/<NAME>

3.15 Linked Data and RDF

Linked data and RDF features for CKAN are provided by the ckanext-dcat extension:
https://github.com/ckan/ckanext-dcat

These features include the RDF serializations of CKAN datasets based on DCAT, that used to be generated using
templates hosted on the main CKAN repo, eg:

* https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.xml

* https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.ttl

* https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.n3

* https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.jsonld

ckanext-dcat offers many more features, including catalog-wide endpoints and harvesters to import RDF data into
CKAN. Please check its documentation to know more about

As of CKAN 2.5, the RDF templates have been moved out of CKAN core in favour of the ckanext-dcat customizable
endpoints. Note that previous CKAN versions can still use the ckanext-dcat RDF representations, which will override
the old ones served by CKAN core.

110 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-dcat
http://www.w3.org/TR/vocab-dcat/
https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.xml
https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.ttl
https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.n3
https://demo.ckan.org/dataset/newcastle-city-council-payments-over-500.jsonld
https://github.com/ckan/ckanext-dcat#overview
https://github.com/ckan/ckanext-dcat#rdf-dcat-endpoints

CKAN documentation, Release 2.11.0a0

3.16 Background jobs

CKAN allows you to create jobs that run in the ‘background’, i.e. asynchronously and without blocking the main
application. Such jobs can be created in Extensions or in core CKAN.

Background jobs can be essential to providing certain kinds of functionality, for example:
* Creating web-hooks that notify other services when certain changes occur (for example a dataset is updated)
 Performing processing or validation or on data (as done by the Archiver and DataStorer Extensions)

Basically, any piece of work that takes too long to perform while the main application is waiting is a good candidate
for a background job.

Note: The current background job system is based on RQ and was introduced in CKAN 2.7. See Migrating from
CKAN’s previous background job system for details on how to migrate your jobs from the previous system introduced
in CKAN 1.5.

3.16.1 Writing and enqueuing background jobs

Note: This section is only relevant for developers working on CKAN or an extension.

The core of a background job is a regular Python function. For example, here’s a very simply job function that logs a
message:

import logging

def log_job(msg, level=logging.INFO, logger=u'ckan'):
uHV
Background job to log a message.
logger = logging.getLogger(logger)
logger.log(level, msg)

And that’s it. Your job function can use all the usual Python features. Just keep in mind that your function will be run in
a separate process by a worker, so your function should not depend on the current state of global variables, etc. Ideally
your job function should receive all the information it needs via its arguments.

In addition, the module that contains your job function must be importable by the worker, which must also be able to
get the function from its module. This means that nested functions, lambdas and instance methods cannot be used as
job functions. While class methods of top-level classes can be used it’s best to stick to ordinary module-level functions.

Note: Background jobs do not support return values (since they run asynchronously there is no place to return those
values to). If your job function produces a result then it needs to store that result, for example in a file or in CKAN’s
database.

Once you have a job function, all you need to do is to use ckan.1lib. jobs.enqueue to create an actual job out of it:

import ckan.lib.jobs as jobs

jobs.enqueue(log_job, [u'My log message'])

3.16. Background jobs 111

http://python-rq.org

CKAN documentation, Release 2.11.0a0

This will place a job on the job queue where it can be picked up and executed by a worker.

Note: Extensions should use ckan.plugins.toolkit.enqueue_job() instead. It’s the same function but access-
ing it via ckan.plugins. toolkit decouples your code from CKAN's internal structure.

The first argument to enqueue is the job function to use. The second is a list of the arguments which should be passed
to the function. You can omit it in which case no arguments will be passed. You can also pass keyword arguments in a
dict as the third argument:

[jobs.enqueue(log_job, [u'My log message'], {u'logger': u'ckanext.foo'})]

You can also give the job a title which can be useful for identifying it when managing the job queue:

[jobs.enqueue(log_job, [u'My log message'], title=u'My log job')]

A timeout can also be set on a job iwth the timeout keyword argument:

[jobs.enqueue(log_job, [u'My log message'], rq_kwargs={"timeout": 3600}) J

The default background job timeout is 180 seconds. This is set in the ckan config .ini file under the ckan. jobs.
timeout item.

Accessing the database from background jobs

Code running in a background job can access the CKAN database like any other CKAN code.

In particular, using the action functions to modify the database from within a background job is perfectly fine. Just
keep in mind that while your job is running in the background, the CKAN main process or other background jobs may
also modify the database. Hence a single call to an action function is atomic from your job’s view point, but between
multiple calls there may be foreign changes to the database.

Special care has to be taken if your background job needs low-level access to the database, for example to modify
SQLAIchemy model instances directly without going through an action function. Each background job runs in a
separate process and therefore has its own SQLAlchemy session. Your code has to make sure that the changes it makes
are properly contained in transactions and that you refresh your view of the database to receive updates where necessary.
For these (and other) reasons it is recommended to use the action functions to interact with the database.

3.16.2 Running background jobs
Jobs are placed on the job queue, from which they can be retrieved and executed. Since jobs are designed to run
asynchronously that happens in a separate process called a worker.

After it has been started, a worker listens on the queue until a job is enqueued. The worker then removes the job from
the queue and executes it. Afterwards the worker waits again for the next job to be enqueued.

Note: Executed jobs are discarded. In particular, no information about past jobs is kept.

Workers can be started using the Run a background job worker command:

[ckan -c /etc/ckan/default/ckan.ini jobs worker]

112 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

The worker process will run indefinitely (you can stop it using CTRL+C).

Note: You can run multiple workers if your setup uses many or particularly long background jobs.

Using Supervisor

In a production setting, the worker should be run in a more robust way. One possibility is to use Supervisor.

First install Supervisor:

[sudo apt-get install supervisor J

Next copy the configuration file template:

—,supervisor/conf.d

sudo cp /usr/lib/ckan/default/src/ckan/ckan/config/supervisor-ckan-worker.conf /etc/ ’

Next make sure the /var/log/ckan/ directory exists, if not then it needs to be created:

[sudo mkdir /var/log/ckan]

Open /etc/supervisor/conf.d/supervisor-ckan-worker.conf in your favourite text editor and make sure all
the settings suit your needs. If you installed CKAN in a non-default location (somewhere other than /usr/1ib/ckan/
default) then you will need to update the paths in the config file (see the comments in the file for details).

Restart Supervisor:

[sudo service supervisor restart }

The worker should now be running. To check its status, use

[sudo supervisorctl status J

You can restart the worker via

[sudo supervisorctl restart ckan-worker:*]

To test that background jobs are processed correctly you can enqueue a test job via

[ckan -c |ckan.ini| jobs test]

The worker’s log files (/var/log/ckan/ckan-worker.stdout.log and/or /var/log/ckan/ckan-worker.
stderr.log) should then show how the job was processed by the worker.

In case you run into problems, make sure to check the logs of Supervisor and the worker:

cat /var/log/supervisor/supervisord.log
cat /var/log/ckan/ckan-worker.stdout.log
cat /var/log/ckan/ckan-worker.sterr.log

3.16. Background jobs 113

http://supervisord.org/

CKAN documentation, Release 2.11.0a0

3.16.3 Managing background jobs

Once they are enqueued, background jobs can be managed via the ckan command and the web API.

List enqueues jobs

* ckan jobs list

e ckan.logic.action.get.job_list()
Show details about a job

* ckan jobs show

e ckan.logic.action.get. job_show()
Cancel a job

A job that hasn’t been processed yet can be canceled via
* ckan jobs cancel
e ckan.logic.action.delete. job_cancel()

Clear all enqueued jobs

* ckan jobs clear

e ckan.logic.action.delete. job_clear()

Logging

Information about enqueued and processed background jobs is automatically logged to the CKAN logs. You may need
to update your logging configuration to record messages at the INFO level for the messages to be stored.

3.16.4 Background job queues

By default, all functionality related to background jobs uses a single job queue that is specific to the current CKAN
instance. However, in some situations it is useful to have more than one queue. For example, you might want to
distinguish between short, urgent jobs and longer, less urgent ones. The urgent jobs should be processed even if a long

and less urgent job is already running.

For such scenarios, the job system supports multiple queues. To use a different queue, all you have to do is pass the

(arbitrary) queue name. For example, to enqueue a job at a non-default queue:

queue=u'my-own-queue ')

‘jobs.enqueue(log_job, [U"I'm from a different queue!"],

Similarly, to start a worker that only listens to the queue you just posted a job to:

[ckan -c |ckan.ini| jobs worker my-own-queue

114

Chapter 3.

Maintainer’s guide

CKAN documentation, Release 2.11.0a0

See the documentation of the various functions and commands for details on how to use non-standard queues.

Note: If you create a custom queue in your extension then you should prefix the queue name using your extension’s
name. See Avoid name clashes.

Queue names are internally automatically prefixed with the CKAN site ID, so multiple parallel CKAN instances are
not a problem.

3.16.5 Testing code that uses background jobs
Due to the asynchronous nature of background jobs, code that uses them needs to be handled specially when writing
tests.

A common approach is to use the mock package to replace the ckan.plugins.toolkit.enqueue_job function with
a mock that executes jobs synchronously instead of asynchronously:

import unittest.mock as mock

from ckan.tests import helpers

def synchronous_enqueue_job(job_func, args=None, kwargs=None, title=None):

"

Synchronous mock for “‘ckan.plugins.toolkit.enqueue_job" .
args = args or []

kwargs = kwargs or {}

job_func(*args, **kwargs)

class TestSomethingWithBackgroundJobs(helpers.FunctionalTestBase):

@mock.patch('ckan.plugins.toolkit.enqueue_job"',
side_effect=synchronous_enqueue_job)
def test_something(self, enqueue_job_mock):
some_function_that_enqueues_a_background_job()
assert something

Depending on how the function under test calls enqueue_job you might need to adapt where the mock is installed.
See mock’s documentation for details.

3.16.6 Migrating from CKAN’s previous background job system

Before version 2.7 (starting from 1.5), CKAN offered a different background job system built around Celery. As of
CKAN 2.8, that system is no longer available. You should therefore update your code to use the new system described
above.

Migrating existing job functions is easy. In the old system, a job function would look like this:

@celery.task(name=u'my_extension.echofunction')
def echo(message):
print message

3.16. Background jobs 115

https://pypi.python.org/pypi/mock
https://docs.python.org/dev/library/unittest.mock.html
http://celeryproject.org/

CKAN documentation, Release 2.11.0a0

As described above, under the new system the same function would be simply written as

def echo(message):
print message

There is no need for a special decorator. In the new system there is also no need for registering your tasks via setup . py.

Migrating the code that enqueues a task is also easy. Previously it would look like this:

celery.send_task(u'my_extension.echofunction', args=[u'Hello World'],
task_id=str(uuid.uuid4()))

With the new system, it looks as follows:

import ckan.lib.jobs as jobs

jobs.enqueue(ckanext.my_extension.plugin.echo, [u'Hello World'])

As you can see, the new system does not use strings to identify job functions but uses the functions directly instead.
There is also no need for creating a job ID, that will be done automatically for you.

Supporting both systems at once

It might make sense to support both the RQ and the old Celery-based job system.
The easiest way to do that is to use ckanext-rq, which provides a back-port of the new system to older CKAN versions.

If you are unable to use ckanext-rg then you will need to write your code in such a way that it works on both systems.
This could looks as follows. First split your Celery-based job functions into the job itself and its Celery handler. That
is, change

@celery.task(name=u'my_extension.echofunction')
def echo(message):
print message

to

def echo(message):
print message

@celery.task(name=u'my_extension.echofunction')
def echo_celery(*args, **kwargs):
echo(*args, **kwargs)

That way, you can call echo using the new system and use the name for Celery.

Then use the new system if it is available and fall back to Celery otherwise:

def compat_enqueue(name, fn, args=None):
uHV
Enqueue a background job using Celery or RQ.
try:
Try to use RQ
from ckan.plugins.toolkit import enqueue_job
enqueue_job(fn, args=args)
(continues on next page)

116 Chapter 3. Maintainer’s guide

https://github.com/davidread/ckanext-rq

CKAN documentation, Release 2.11.0a0

(continued from previous page)
except ImportError:
Fallback to Celery
import uuid
from ckan.lib.celery_app import celery
celery.send_task(name, args=args, task_id=str(uuid.uuid4()))

Use that function as follows for enqueuing a job:

compat_enqueue (u'my_extension.echofunction',
ckanext.my_extension.plugin.echo,
[u'Hello World'])

3.17 Email notifications

CKAN can send email notifications to users, for example when a user has new activities on her dashboard. Once email
notifications have been enabled by a site admin, each user of a CKAN site can turn email notifications on or off for
herself by logging in and editing her user preferences. To enable email notifications for a CKAN site, a sysadmin must:

1. Setup a cron job or other scheduled job on a server to call CKAN’s send_email_notifications API action
at regular intervals (e.g. hourly) and send any pending email notifications to users.

On most UNIX systems you can setup a cron job by running crontab -e in a shell to edit your crontab file, and
adding a line to the file to specify the new job. For more information run man crontab in a shell.

CKAN’s send_email_notifications API action can be called via the cli’s ckan notify send_emails
command. For example, here is a crontab line to send out CKAN email notifications hourly:

[@hourly echo '{}' | ckan -c path-to-your-ckan.ini notify send_emails > /dev/null]

The @hourly can be replaced with @daily, @weekly or @Gmonthly.

Warning: CKAN will not send email notifications for events older than the time period specified by the
ckan.email_notifications_since config setting (default: 2 days), so your cron job should run more
frequently than this. @hourly and @daily are good choices.

Note: Since send_email_notifications is an API action, it can be called from a machine other than the
server on which CKAN is running, simply by POSTing an HTTP request to the CKAN API (you must be a
sysadmin to call this particular API action). See API guide.

2. CKAN will not send out any email notifications, nor show the email notifications preference to users, unless the
ckan.activity_streams_email_notifications option is set to True, so put this line in the [app:main] section of
your CKAN config file:

[ckan.activity_streams_email_notifications = True]

3. Make sure that ckan.site_url is set correctly in the [app:main] section of your CKAN configuration file. This
is used to generate links in the bodies of the notification emails. For example:

[ckan. site_url = http://publicdata.eu]

3.17. Email notifications 117

CKAN documentation, Release 2.11.0a0

4. Make sure that smtp.mail_from is set correctly in the [app:main] section of your CKAN configuration file. This

is the email address that CKAN’s email notifications will appear to come from. For example:

[smtp .mail_from = mailman@publicdata.eu J

This is combined with your ckan.site_title to form the From: header of the email that are sent, for example:

[From: PublicData.eu <mailmain@publicdata.eu> J

If you would like to use an alternate reply address, such as a “no-reply” address, set smip.reply_to in the
[app:main] section of your CKAN configuration file. For example:

[smtp .reply_to = noreply@example.com }

5. If you do not have an SMTP server running locally on the machine that hosts your CKAN instance, you can change

the Email settings to send email via an external SMTP server. For example, these settings in the [app:main]
section of your configuration file will send emails using a gmail account (not recommended for production web-
sites!):

smtp.server = smtp.gmail.com:587
smtp.starttls = True

smtp.user = your_username@gmail.com
smtp.password = your_gmail_ password
smtp.mail_from = your_username@gmail.com

You need to restart the web server for the new configuration to take effect. For example, if you are using a CKAN
package install, run this command in a shell:

sudo supervisorctl restart ckan-uwsgi:*

3.18 Page View Tracking

CKAN has a core extension already installed that allows the system to anonymously track visits to pages of your site.
You ca use this tracking data to:

Sort datasets by popularity

Highlight popular datasets and resources

Show view counts next to datasets and resources
Show a list of the most popular datasets

Export page-view data to a CSV file

See also:

ckanext-googleanalytics

A CKAN extension that integrates Google Analytics into CKAN.

Note: CKAN 2.10 and older versions had tracking integrated into the core and this instructions no longer apply.
Checkout the 2.10 documentation for more information.

118

Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-googleanalytics
https://docs.ckan.org/en/2.10/maintaining/tracking.html

CKAN documentation, Release 2.11.0a0

3.18.1 Enabling Page View Tracking Extension

To enable page view tracking:

1. Add the fracking extension to your CKAN configuration file (e.g. /etc/ckan/default/ckan.ini):

[app:main]
ckan.plugins = tracking

Save the file and restart your web server. CKAN will now record raw page view tracking data in your CKAN
database as pages are viewed.

. Setup a cron job to update the tracking summary data.

For operations based on the tracking data CKAN uses a summarised version of the data, not the raw tracking
data that is recorded “live” as page views happen. The ckan tracking update and ckan search-index
rebuild commands need to be run periodicially to update this tracking summary data.

You can setup a cron job to run these commands. On most UNIX systems you can setup a cron job by running
crontab -e in a shell to edit your crontab file, and adding a line to the file to specify the new job. For more
information run man crontab in a shell. For example, here is a crontab line to update the tracking data and
rebuild the search index hourly:

@hourly ckan -c /etc/ckan/default/ckan.ini tracking update && ckan -c /etc/ckan/
—default/ckan.ini search-index rebuild -r

Replace /usr/1ib/ckan/bin/ with the path to the bin directory of the virtualenv that you’ve installed CKAN
into, and replace ‘/etc/ckan/default/ckan.ini” with the path to your CKAN configuration file.

The @hourly can be replaced with @daily, @weekly or @monthly.

3.18.2 Retrieving Tracking Data

When the extension is enabled, tracking summary data for datasets and resources is available in the dataset and resource
dictionaries returned by, for example, the package_show() APL:

"tracking_summary": {

},

"recent": 5,
"total": 15

This can be used, for example, by custom templates to show the number of views next to datasets and resources. A
dataset or resource’s recent count is its number of views in the last 14 days, the total count is all of its tracked views
(including recent ones).

You can also export tracking data for all datasets to a CSV file using the ckan tracking export command. For
details, run ckan tracking -h.

Note: Repeatedly visiting the same page will not increase the page’s view count! Page view counting is limited to one
view per user per page per day.

3.18. Page View Tracking 119

CKAN documentation, Release 2.11.0a0

3.18.3 Sorting Datasets by Popularity

Once you’ve enabled page view tracking on your CKAN site, you can view datasets most-popular-first by selecting
Popular from the Order by: dropdown on the dataset search page:

4 / Datasets

T Groups Clear All
Dave's books (2)

Roger's books (1)
Show More Groups 2 datasets found Order by:

Relevance

Name Ascending
T Tags Clear All Name Descending
A Novel By Tolstoy Last Modified

russian (2)) o
Some test notes A 3rd level heading Some bolded text. Some italicized text. Foretg
Flexible 7 (2) umlaut i 66-style quote * foreign word: thimb Needs...
tolstoy (1) plain text J JSON]
Show More Tags
A Wonderful Story
Y Formats Clear All
plain text (1)

The datasets are sorted by their number of recent views.

You can retrieve datasets most-popular-first from the CKAN API by passing 'sort': 'views_recent desc' tothe
package_search() action. This could be used, for example, by a custom template to show a list of the most popular
datasets on the site’s front page.

Tip: You can also sort datasets by total views rather than recent views. Pass 'sort': 'views_total desc' to
the package_search() API, or use the URL /dataset?q=&sort=views_total+desc in the web interface.

3.18.4 Highlighting Popular Datasets and Resources

Once you’ve enabled page view tracking on your CKAN site, popular datasets and resources (those with more than 10
views) will be highlighted with a “popular” badge and a tooltip showing the number of views:

A Novel By Tolstoy

120 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Data and Resources

5% Full text
: Full text. Neehescaping:"Umlaut: G

2% Index of the nuvei

Tip: You can change the number of views that a dataset or resource needs to be considered popular by overriding
ckanext/tracking/templates/snippets/popular.html template. The default is 10.

3.19 Multilingual Extension

For translating CKAN’s web interface see Translating CKAN . In addition to user interface internationalization, a CKAN
administrator can also enter translations into CKAN’s database for terms that may appear in the contents of datasets,
groups or tags created by users. When a user is viewing the CKAN site, if the translation terms database contains a
translation in the user’s language for the name or description of a dataset or resource, the name of a tag or group, etc.
then the translated term will be shown to the user in place of the original.

3.19.1 Setup and Configuration

By default term translations are disabled. To enable them, you have to specify the multilingual plugins using the
ckan.plugins setting in your CKAN configuration file, for example:

List the names of CKAN extensions to activate.
ckan.plugins = multilingual_dataset multilingual_group multilingual_tag

Of course, you won’t see any terms getting translated until you load some term translations into the database. You can
do this using the term_translation_update and term_translation_update_many actions of the CKAN API,
See API guide for more details.

3.19.2 Loading Test Translations

If you want to quickly test the term translation feature without having to provide your own translations, you can load
CKAN’s test translations into the database by running this command from your shell:

[ckan -c |ckan.ini| create-test-data translations

See Command Line Interface (CLI) for more details.

3.19. Multilingual Extension 121

CKAN documentation, Release 2.11.0a0

3.19.3 Testing The Multilingual Extension

If you have a source installation of CKAN you can test the multilingual extension by running the tests located in
ckanext/multilingual/tests. You must first install the packages needed for running CKAN tests into your virtual
environment, and then run this command from your shell:

[pytest --ckan-ini=test-core.ini ckanext/multilingual/tests

See Testing CKAN for more information.

3.20 Stats Extension

CKAN’s stats extension analyzes your CKAN database and displays several tables and graphs with statistics about your
site, including:

* Total number of datasets

» Dataset revisions per week

* Top-rated datasets

* Most-edited Datasets

» Largest groups

» Top tags

» Users owning most datasets
See also:
CKAN’s built-in page view tracking feature, which tracks visits to pages.
See also:

ckanext-googleanalytics
A CKAN extension that integrates Google Analytics into CKAN.

3.20.1 Enabling the Stats Extension

To enable the stats extensions add stats to the ckan.plugins option in your CKAN config file, for example:

[ckan.plugins = stats

3.20.2 Viewing the Statistics

To view the statistics reported by the stats extension, visit the /stats page, for example: https://demo.ckan.org/stats

122 Chapter 3. Maintainer’s guide

https://github.com/ckan/ckanext-googleanalytics
https://demo.ckan.org/stats

CKAN documentation, Release 2.11.0a0

3.21 Configuration Options

The functionality and features of CKAN can be modified using many different configuration options. These are gener-
ally set in the CKAN configuration file, but some of them can also be set via Environment variables or at runtime.

Note: Looking for the available configuration options? Jump to CKAN configuration file.

3.21.1 Environment variables

Some of the CKAN configuration options can be defined as Environment variables on the server operating system.

These are generally low-level critical settings needed when setting up the application, like the database connection, the
Solr server URL, etc. Sometimes it can be useful to define them as environment variables to automate and orchestrate
deployments without having to first modify the CKAN configuration file.

These options are only read at startup time to update the config object used by CKAN, but they won’t be accessed
any more during the lifetime of the application.

CKAN environment variable names match the options in the configuration file, but they are always uppercase and
prefixed with CKAN_ (this prefix is added even if the corresponding option in the ini file does not have it), and replacing
dots with underscores.

This is the list of currently supported environment variables, please refer to the entries in the CKAN configuration file
section below for more details about each one:

CONFIG_FROM_ENV_VARS: dict[str, str] = {
'sqlalchemy.url': 'CKAN_SQLALCHEMY_URL',
'ckan.datastore.write_url': 'CKAN_DATASTORE_WRITE_URL',
'ckan.datastore.read_url': 'CKAN_DATASTORE_READ_URL',
'ckan.redis.url': 'CKAN_REDIS_URL',

'solr_url': 'CKAN_SOLR_URL',

'solr_user': 'CKAN_SOLR_USER',
'solr_password': 'CKAN_SOLR_PASSWORD',
'ckan.site_id': 'CKAN_SITE_ID',
'ckan.site_url': 'CKAN_SITE_URL',
'ckan.storage_path': 'CKAN_STORAGE_PATH',
'ckan.datapusher.url': 'CKAN_DATAPUSHER_URL',
'smtp.server': 'CKAN_SMTP_SERVER',
'smtp.starttls': 'CKAN_SMTP_STARTTLS',
"smtp.user': 'CKAN_SMTP_USER',
'smtp.password': 'CKAN_SMTP_PASSWORD',
"smtp.mail_from': 'CKAN_SMTP_MAIL_FROM',
'ckan.max_resource_size': 'CKAN_MAX_UPLOAD_SIZE_VMB'

3.21. Configuration Options 123

http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable

CKAN documentation, Release 2.11.0a0

3.21.2 Updating configuration options during runtime

CKAN configuration options are generally defined before starting the web application (either in the CKAN configuration
file or via Environment variables).

A limited number of configuration options can also be edited during runtime. This can be done on the administration
interface or using the config_option_update() API action. Only sysadmins can edit these runtime-editable con-
figuration options. Changes made to these configuration options will be stored in the database and persisted when the
server is restarted.

Extensions can add (or remove) configuration options to the ones that can be edited at runtime. For more details on
how to do this check Making configuration options runtime-editable.

3.21.3 Config declaration

Tracking down all the possible config options in your CKAN site can be a challenging task. CKAN itself and its
extensions change over time, deprecating features and providing new ones, which means that some new config options
may be introduced, while other options no longer have any effect. In order to keep track of all valid config options,
CKAN uses config declarations.

CKAN itself declares all the config options that are used throught the code base (You can see the core config declarations
in the ckan/config/config_declaration.yaml file). This allows to validate the current configuration against the
declaration, or check which config options in the CKAN config file are not declared (and might have no effect).

Declaring config options

Note: Starting from CKAN 2.11, CKAN will log a warning every time a non-declared configuration option is accessed.
To prevent this, declare the configuration options offered by your extension using the methods below

Using a text file (JSON, YAML or TOML)

The recommended way of declaring config options is using the config_declarations blanket. It allows you to
write less code and define your config options using JSON, YAML, or TOML (if the toml package is installed inside
your virtual environment). That is how CKAN declares config options for all its built-in plugins, like datastore or
datatables_view.

To use it, decorate the plugin with the config_declarations blanket:

import ckan.plugins as p
import ckan.plugins.toolkit as tk

@tk.blanket.config_declarations
class MyExt(p.SingletonPlugin):
pass

Next, create a file config_declaration.yaml at the root directory of your extension: ckanext/my_ext/
config_declaration.yaml. You can use the .json or .toml extension instead of .yaml.

Here is an example of the config declaration file. All the comments are added only for explanation and you don’t need
them in the real file:

124 Chapter 3. Maintainer’s guide

http://en.wikipedia.org/wiki/Environment_variable

CKAN documentation, Release 2.11.0a0

schema version of the config declaration. At the moment, the only valid value is 1"
version: 1

an array of configuration blocks. Each block has an "annotation", that

describes the block, and the list of options. These groups help to separate
config options visually, but they have no extra meaning.

groups:

short text that describes the group. It can be shown in the config file
as following:

MyEXt settings ###HARAAAHHHHHHHHAY

some.option = some.value

another.option = another.value

- annotation: MyExt settings

an array of actual declarations
options:

The only required item in the declaration is ‘key . ‘key defines the
name of the config option
- key: my_ext.flag.do_something

default value, used when the option is missing from the config file.
default: false

import path of the function that must be called in order to get the

default value. This can be used when the default value can be obtained from

an environment variable, database or any other external source.

IMPORTANT: use either ‘default’ or ‘default_callable’, not both at the same time
default_callable: ckanext.my_ext.utils:function_that_returns_default

Example of value that can be used for given option. If the config

option is missing from the config file, ‘placeholder’ IS IGNORED. It
has only demonstration purpose. Good uses of ‘placeholder’ are:

examples of secrets, examples of DB connection string.

IMPORTANT: do not use ‘default” and ‘placeholder’ at the same

time. “placeholder” should be used INSTEAD OF the ‘default’

whenever you think it has a sense.

placeholder: false

import path of the function that must be called in order to get the

placeholder value. Basically, same as ‘default_callable’, but it

produces the value of ‘placeholder’.

IMPORTANT: use either ‘placeholder’ or ‘placeholder_callable®, not both at the.
—.same time

placeholder_callable: ckanext.my_ext.utils:function_that_returns_placeholder

A dictionary with keyword-arguments that will be passed to
‘default_callable® or ‘placeholder_callable'. As mentioned above,
only one of these options may be used at the same time, so
“callable_args® can be used by any of these options without a conflict.
callable_args:
arg_1l: 20

(continues on next page)

3.21. Configuration Options 125

CKAN documentation, Release 2.11.0a0

(continued from previous page)

arg_2: "hello"

an alternative example of a valid value for option. Used only in
CKAN documentation, thus has no value for extensions.
example: some-valid-value

an explanation of the effect that option has. Don't hesistate to

put as much details here as possible

description: |
Nullam eu ante vel est convallis dignissim. Fusce suscipit, wisi
nec facilisis facilisis, est dui fermentum leo, quis tempor
ligula erat quis odio. Nunc porta vulputate tellus. Nunc rutrum
turpis sed pede. Sed bibendum. Aliquam posuere. Nunc aliquet,
augue nec adipiscing interdum, lacus tellus malesuada massa, quis
varius mi purus non odio. Pellentesque condimentum, magna ut
suscipit hendrerit, ipsum augue ornare nulla, non luctus diam
neque sit amet urna. Curabitur vulputate vestibulum lorem.
Fusce sagittis, libero non molestie mollis, magna orci ultrices
dolor, at vulputate neque nulla lacinia eros. Sed id ligula quis
est convallis tempor. Curabitur lacinia pulvinar nibh. Nam a
sapien.

a space-separated list of validators, applied to the value of option.
validators: not_missing boolean_validator

shortcut for the most common option types. It adds type validators to the option.

If both, ‘type’ and ‘validators' are set, validators from ‘type are added first,

then validators from ‘validators™ are appended.

Valid types are: bool, int, list, dynamic (see below for more information on,
—dynamic

options)

type: bool

boolean flag that marks config option as experimental. Such options are hidden.,
— from

examples of configuration or any other auto-generated output. But they are.
—declared,

thus can be validated and do not produce undeclared-warning. Use it for options.
- that

are not stable and may be removed from your extension before the public release

experimental: true

boolean flag that marks config option as ignored. Can be used for options that.,
—are set

programmatically. This flag means that there is no sense in setting this option,.
—because

it will be overriden or won't be used at all.

ignored: true

boolean flag that marks config option as hidden. Used for options that should.
—not be set

inside config file or anyhow used by others. Often this flag is used for options

(continues on next page)

126 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

- for

—that

— for

(continued from previous page)

that are added by Flask core or its extensions.
internal: true

boolean flag that marks config option as required. Doesn't have a special effect.
now,
but may prevent application from startup in future, so use it only on options.,

are essential for your plugin and that have no sensible default value.
required: true

boolean flag that marks config option as editable. Doesn't have a special effect.
now.

It's recommended to enable this flag for options that are editable via AdminUI.
editable: true

boolean flag that marks option as commented. Such options are added
as comments to the config file generated from template.
commented: true

Deprecated name of the option. Can be used for options that were renamed.

When ‘key is missing from config and ‘legacy_key is available, the value of
“legacy_key' is used, printing a deprecation warning in the logs.

legacy_key: my_ext.legacy.flag.do_something

The IConfigDeclaration interface

The IConfigDeclaration interface is available to plugins that want more control on how their own config options

are decl

ared.

New config options can only be declared inside the declare_config_options () method. This method accepts two
arguments: a Declaration object that contains all the declarations, and a Key helper, which allows to declare more

unusual

config options.

A very basic config option may be declared in this way:

[declaration .declare("ckanext.my_ext.option")

)

which just means that extension my_ext makes use of a config option named ckanext.my_ext.option. If we want
to define the default value for this option we can write:

[declaration .declare("ckanext.my_ext.option", True)

)

The sec

ond parameter to declare() specifies the default value of the declared option if it is not provided in the

configuration file. If a default value is not specified, it’s implicitly set to None.

You can assign validators to a declared config option:

option
option

= declaration.declare("ckanext.my_ext.option", True)
.set_validators("not_missing boolean_validator")

set_va

lidators accepts a string with the names of validators that must be applied to the config option. These

validators need to registered in CKAN core or in your own extension using the IValidators interface.

3.21. Configuration Options 127

CKAN documentation, Release 2.11.0a0

Note: Declared default values are also passed to validators. In addition, different validators can be applied to the same
option multiple times. This means that validators must be idempotent and that the default value itself must be valid for
the given set of validators.

If you need to declare a lot of options, you can declare all of them at once loading a dict:

[declaration .load_dict(DICT_WITH_DECLARATIONS) J

This allows to keep the configuration declaration in a separate file to make it easier to maintain if your plugin supports
several config options.

Note: declaration.load_dict() takes only python dictionary as argument. If you store the declaration in an
external file like a JSON, YAML file, you have to parse it into a Python dictionary yourself or use corresponding
blanket. Read the following section for additional information.

Dynamic config options

There is a special option type, dynamic. This option type is used for a set of options that have common name-pattern.
Because dynami c type defines multiple options, it has no default, validators and serves mostly documentation purposes.
Let’s use CKAN’s sqlalchemy.* options as example. Every option whose name follows the pattern sqlalchemy.
SOMETHING is passed to the SQLAlchemy engine created by CKAN. CKAN doesn’t actually know which options are
valid and it’s up to you to provide valid values. Basically, we have a set of options with prefix sqlalchemy.. If use
these options without declararing, it will trigger warnings about using undeclared options, which are harmless but can
be annoying. Declaring them helps to make explicit which configuration options are actually being used. In order
to declare such set of options, put some label surrounded with angle brackets instead of the dynamic part of option’s
name. In our case it can be sqlalchemy.<OPTION> or sqlalchemy.<anything>. Any word can be used as label,
the only important part here are angle brackets:

- key: sqlalchemy.<OPTION>
type: dynamic
description: |

Example::

sqlalchemy.pool_pre_ping=True
sglalchemy.pool_size=10
sqlalchemy.max_overflow=20

Custom sqlalchemy config parameters used to establish the main
database connection.

Use this feature sparsely, only when you really want to declare literally ANY value following the pattern. If you have
finite set of possible options, consider declaring all of them, because it allows you to provide validators, defaults, and
prevents you from accidental shadowing unrelated options.

128 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Accessing config options

Using validators ensures that config values are normalized. Up until now you have probably seen code like this one:

{is_enabled = toolkit.asbool(toolkit.config.get("ckanext.my_ext.enable", False))]

Declaring this configuration option and assigning validators (convert_int, boolean_validators) and a default value
means that we can use the config.get (key) instead of the expression above:

[i s_enabled = toolkit.config.get("ckanext.my_ext.enable™)]

This will ensure that:
1. If the value is not explicitly defined in the configuration file, the default one will be picked

2. This value is passed to the validators, and a valid value is returned

Note: An attempt to use config.get () with an undeclared config option will print a warning to the logs and return
the option value or None as default.

Command line interface

The current configuration can be validated using the config declaration CLI:

[ckan config validate]

To get an example of the configuration for a given plugin, run ckan config declaration <PLUGIN>, eg:

ckan config declaration datastore

Datastore settings #AARAHHHHHHARHRBAAHHHHHHURBRBRHHHHHRRRRBRAR BB HHBRRRBAAHHS
ckan.datastore.write_url = postgresql://ckan_default:pass@localhost/datastore_default
ckan.datastore.read_url = postgresql://datastore_default:pass@localhost/datastore_default
ckan.datastore.sqglsearch.enabled = false

ckan.datastore.search.rows_default = 100

ckan.datastore.search.rows_max = 32000

ckan.datastore.sqlalchemy.<OPTION> =

PostgreSQL' full-text search parameters #####H#HARARARHAHHHHHHHHAARARARAHAHHHH
ckan.datastore.default_fts_lang = english
ckan.datastore.default_fts_index_method = gist

To get an example of the declaration code itself in order to use it as a starting point in your own plugin, you can run
ckan config describe <PLUGIN>, eg:

ckan config describe datapusher

Output:

declaration.annotate('Datapusher settings')
declaration.declare(key.ckan.datapusher. formats, ...)
declaration.declare(key.ckan.datapusher.url)
declaration.declare(key.ckan.datapusher.callback_url_base)

(continues on next page)

3.21. Configuration Options 129

CKAN documentation, Release 2.11.0a0

(continued from previous page)

declaration.declare(key.ckan.datapusher.assume_task_stale_after, 3600).set_validators(
—'convert_int')

You can output the config declaration in different formats, which is useful if you want to keep them separately:

ckan config describe datapusher --format=dict # python dict
ckan config describe datapusher --format=json # JSON file
ckan config describe datapusher --format=yaml # YAML file
ckan config describe datapusher --format=toml # TOML file

3.21.4 CKAN configuration file

From CKAN 2.9, by default, the configuration file is located at /etc/ckan/default/ckan.ini. Previous releases the
configuration file(s) were: /etc/ckan/default/development.ini or /etc/ckan/default/production.ini.
This section documents all of the config file settings, for reference.

Note: After editing your config file, you need to restart your webserver for the changes to take effect.

Note: Unless otherwise noted, all configuration options should be set inside the [app:main] section of the config
file (i.e. after the [app:main] line):

[DEFAULT]

[server:main]

use = egg:Paste#http
host = 0.0.0.0

port = 5000

This setting will not work, because it's outside of [app:main].
ckan.site_logo = /images/masaq.png

[app:main]
This setting will work.
ckan.plugins = stats text_view datatables_view

If the same option is set more than once in your config file, exeption will be raised and CKAN application will not start

130 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Default settings

debug

Example:

[debug = true J

Default value: False

This enables the Flask-DebugToolbar in the web interface, makes Webassets serve unminified JS and CSS files, and
enables CKAN templates’ debugging features.

You will need to ensure the Flask-DebugToolbar python package is installed, by activating your ckan virtual envi-
ronment and then running:

[pip install -r /usr/lib/ckan/default/src/ckan/dev-requirements.txt J

If you are running CKAN on Apache, you must change the WSGI configuration to run a single process of CKAN.
Otherwise the execution will fail with: AssertionError: The EvalException middleware is not usable
in a multi-process environment. Eg. change:

WSGIDaemonProcess ckan_default display-name=ckan_default processes=2 threads=15
to
WSGIDaemonProcess ckan_default display-name=ckan_default threads=15

Warning: This option should be set to False for a public site. With debug mode enabled, a visitor to your site
could execute malicious commands.

General settings

SECRET_KEY

Default value: none

This is the secret token that is used by security related tasks by CKAN and its extensions. ckan generate config
generates a unique value for this each time it generates a config file. Alternatively you can generate one with the
following command:

[python -c "import secrets; print(secrets.token_urlsafe(20))"]

When used in a cluster environment, the value must be the same on every machine.

3.21. Configuration Options 131

https://flask-debugtoolbar.readthedocs.io/

CKAN documentation, Release 2.11.0a0

ckan.legacy_route_mappings

Example:

ckan.legacy_route_mappings = {"home": "home.index", "about": "home.about", "search":
—"dataset.search"}

Default value: {}

This can be used when using an extension that is still using old (Pylons-based) route names to maintain compatibility.

Warning: This configuration will be removed when the migration to Flask is completed. Please update the
extension code to use the new Flask-based route names.

config.mode

Example:

{config .mode = strict

Default value: strict

Warning: This configuration option has no effect starting from CKAN 2.11. The default behaviour going forward
is the old strict mode, where CKAN will not start unless all config options are valid according to the validators
defined in the configuration declaration. For every invalid config option, an error will be printed to the output
stream.

Development settings

ckan.devserver.host

Example:

[ckan.devserver.host =0.0.0.0

Default value: localhost

Host name to use when running the development server.

ckan.devserver.port

Example:

[ckan .devserver.port = 5005

Default value: 5000

Port to use when running the development server.

132 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.devserver.threaded

Example:

[ckan. devserver.threaded = true]

Default value: False

Controls whether the development server should handle each request in a separate thread.

ckan.devserver.multiprocess

Example:

[ckan. devserver.multiprocess = 8]

Default value: 1

If greater than 1 then the development server will handle each request in a new process, up to this maximum number
of concurrent processes.

ckan.devserver.watch_patterns

Example:

[ckan.devserver.watch_patterns = mytheme/**/*.yaml mytheme/**/*.json J

Default value: none

A list of files the reloader should watch to restart the development server, in addition to the Python modules (for example
configuration files)

ckan.devserver.ssl_cert

Example:

[ckan .devserver.ssl_cert = path/to/host.cert J

Default value: none

Path to a certificate file that will be used to enable SSL (ie to serve the local development server on https://localhost:
5000). You can generate a self-signed certificate and key (see ckan.devserver.ssl_key) running the following commands:

openssl genrsa 2048 > host.key
chmod 400 host.key
openssl req -new -x509 -nodes -sha256 -days 3650 -key host.key > host.cert

After that you can run CKAN locally with SSL using this command:

[ckan -c /path/to/ckan.ini run --ssl-cert=/path/to/host.cert --ssl-key=/path/to/host.key J

Alternatively, setting this option to adhoc will automatically generate a new certificate file (on each server reload,
which means that you’ll get a browser warning about the certificate on each reload).

3.21. Configuration Options 133

https://localhost:5000
https://localhost:5000

CKAN documentation, Release 2.11.0a0

ckan.devserver.ssl_key

Example:

[ckan .devserver.ssl_key = path/to/host.key

Default value: none

Path to a certificate file that will be used to enable SSL (ie to serve the local development server on https://localhost:
5000). See ckan.devserver.ssl_cert for more details. This option also supports the adhoc value, with the same caveat.

Session settings

ckan.user.last_active_interval

Default value: 600

The number of seconds between requests to record the last time a user was active on the site.

beaker.session.key

Default value: ckan

Name of the cookie key used to save the session under.

beaker.session.secret

Default value: none

This is the secret token that the beaker library uses to hash the cookie sent to the client. ckan generate config generates
a unique value for this each time it generates a config file. When used in a cluster environment, the value must be the
same on every machine. If not provided, the value of SECRET_KEY will be used.

beaker.session.auto

Default value: False

When set to True, the session will save itself anytime it is accessed during a request, negating the need to issue the
save() method.

beaker.session.cookie_expires

Default value: False

Determines when the cookie used to track the client-side of the session will expire. When set to a boolean value, it will
either expire at the end of the browsers session, or never expire. Setting to a datetime forces a hard ending time for the
session (generally used for setting a session to a far off date). Setting to an integer will result in the cookie being set to
expire in that many seconds. L.e. a value of 300 will result in the cookie being set to expire in 300 seconds. Defaults to
never expiring.

134 Chapter 3. Maintainer’s guide

https://localhost:5000
https://localhost:5000

CKAN documentation, Release 2.11.0a0

beaker.session.cookie_domain

Default value: none

What domain the cookie should be set to. When using sub-domains, this should be set to the main domain the cookie
should be valid for. For example, if a cookie should be valid under www.nowhere.com and files.nowhere.com then it
should be set to .nowhere.com. Defaults to the current domain in its entirety.

beaker.session.save_accessed time

Default value: True

Whether beaker should save the session’s access time (true) or only modification time (false).

beaker.session.secure

Default value: False

Whether or not the session cookie should be marked as secure. When marked as secure, browsers are instructed to not
send the cookie over anything other than an SSL connection.

beaker.session.timeout

Default value: none

Seconds until the session is considered invalid, after which it will be ignored and invalidated. This number is based
on the time since the session was last accessed, not from when the session was created. Defaults to never expiring.
Requires that save_accessed_time be true.

beaker.session.type

Default value: cookie

The type of session to use. The default is cookie, which uses a cookie to store the session id. Other options include
file, which stores the session id in a file, and dbm, which stores the session id in a dbm file. The dbm option is not
recommended as it is not thread-safe.

beaker.session.validate_key

Default value: none

This is the secret token that is used to sign the local encrypted session. ckan generate config generates a unique value
for this each time it generates a config file. When used in a cluster environment, the value must be the same on every
machine. If not provided, the value of SECRET_KEY will be used.

3.21. Configuration Options 135

CKAN documentation, Release 2.11.0a0

beaker.session.httponly

Default value: True

Whether or not the session cookie should be marked as http only. When marked as http only, browsers are instructed

to not allow javascript access to the cookie.

beaker.session.samesite

Default value: Lax

Whether or not the session cookie should be marked as SameSite. When marked as SameSite, browsers are instructed

to not send the cookie with cross-site requests. The value can be “Strict”, “Lax” or “None”.

Database settings

sqlalchemy.url

Example:

[sqlalchemy.url = postgres://tester:pass@localhost/ckantest3

Default value: none

This defines the database that CKAN is to use. The format is:

[sqlalchemy.url = postgres://USERNAME: PASSWORD@HOST /DBNAME

sqglalchemy.<OPTION>

Default value: none

Example:

sqlalchemy.pool_pre_ping=True
sgqlalchemy.pool_size=10
sqlalchemy.max_overflow=20

Custom sqlalchemy config parameters used to establish the main database connection.

To get the list of all the available properties check the SQLAlchemy documentation

Site Settings

ckan.site_url

Example:

[ckan. site_url = http://scotdata.ckan.net

136 Chapter 3.

Maintainer’s guide

http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html#engine-creation-api

CKAN documentation, Release 2.11.0a0

Default value: none
Set this to the URL of your CKAN site. Many CKAN features that need an absolute URL to your site use this setting.

This setting should only contain the protocol (e.g. http://), host (e.g. www.example.com) and (optionally) the port
(e.g. :8080). In particular, if you have mounted CKAN at a path other than / then the mount point must not be included
in ckan.site_url. Instead, you need to set ckan.root_path.

Important: It is mandatory to complete this setting

Warning: This setting should not have a trailing / on the end.

apitoken_header_name

Example:

[apitoken_header_name = X-CKAN-API-TOKEN]

Default value: Authorization

This allows to customize the name of the HTTP header used to provide the CKAN API token. This is useful in some
scenarios where using the default Authorization one causes problems.

ckan.cache_expires

Example:

[ckan. cache_expires = 2592000

Default value: 0

This sets Cache-Control header’s max-age value.

ckan.cache_enabled

Example:

[ckan. cache_enabled = true

Default value: False

This enables cache control headers on all requests. If the user is not logged in and there is no session data a
Cache-Control: public header will be added. For all other requests the Cache-control: private header
will be added.

3.21. Configuration Options 137

CKAN documentation, Release 2.11.0a0

ckan.mimetype_guess

Example:

[ckan.mimetype_guess = file_contents

Default value: file_ext

There are three options for guessing the mimetype of uploaded or linked resources: file_ext, file_contents, None.

file_ext will guess the mimetype by the url first, then the file extension.
file_contents will guess the mimetype by the file itself, this tends to be inaccurate.

None will not store the mimetype for the resource.

ckan.static_max_age

Example:

[ckan. static_max_age = 2592000

Default value: 3600

Controls CKAN static files’ cache max age, if we’re serving and caching them.

ckan.valid_url_schemes

Example:

[ckan.valid_url_schemes = http https ftp sftp

Default value: http https ftp

Controls what uri schemes are rendered as links.

ckan.requests.timeout

Example:

[ckan.requests.timeout =10

Default value: 5

Defines how long (in seconds) requests calls should last before they will timeout.

138 Chapter 3.

Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.hide_version

Example:

[ckan.hide_version = True

Default value: False

If set to True, CKAN will not publicly expose its version number.

Authorization Settings

ckan.auth.anon_create_dataset

Example:

[ckan.auth.anon_create_dataset = false

Default value: False

Allow users to create datasets without registering and logging in.

ckan.auth.create_unowned_dataset

Example:

[ckan.auth.create_unowned_dataset = false

Default value: False

Allow the creation of datasets not owned by any organization.

ckan.auth.create_dataset_if_not_in_organization

Example:

[ckan .auth.create_dataset_if not_in_organization = false

Default value: True

Allow users who are not members of any organization to create datasets, default: true. create_unowned_dataset
must also be True, otherwise setting create_dataset_if_not_in_organization to True is meaningless.

ckan.auth.user_create_groups

Example:

[ckan .auth.user_create_groups = true

Default value: True

Allow users to create groups.

3.21. Configuration Options 139

CKAN documentation, Release 2.11.0a0

ckan.auth.user_create_organizations

Example:

[ckan.auth.user_create_organizations = false

Default value: True

Allow users to create organizations.

ckan.auth.user_delete_groups

Example:

[ckan.auth.user_delete_groups = false

Default value: True

Allow users to delete groups.

ckan.auth.user_delete_organizations

Example:

[ckan.auth.user_delete_organizations = false

Default value: True

Allow users to delete organizations.

ckan.auth.create_user_via_api

Example:

[ckan.auth.create_user_via_api = false

Default value: False

Allow new user accounts to be created via the API by anyone. When False only sysadmins are authorised.

ckan.auth.create_user_via_web

Example:

[ckan .auth.create_user_via_web = true

Default value: False

Allow new user accounts to be created via the web UL. When False (default value), user accounts can only be
created by:

* Being invited by an organization admin,

* Being created directly by a sysadmin in the /user/register endpoint, or

140 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

* Being created in the CLI using ckan user add

ckan.auth.roles_that_cascade _to_sub_groups

Example:

[ckan.auth.roles_that_cascade_to_sub_groups = admin editor

Default value: admin

Makes role permissions apply to all the groups or organizations down the hierarchy from the groups or organizations
that the role is applied to. e.g. a particular user has the ‘admin’ role for group ‘Department of Health’. If you set the
value of this option to ‘admin’ then the user will automatically have the same admin permissions for the child groups
of ‘Department of Health’ such as ‘Cancer Research’ (and its children too and so on).

ckan.auth.public_user_details

Example:

[ckan.auth.public_user_details = false

Default value: True

Restricts anonymous access to user information. If is set to False accessing users details when not logged in will raise
a Not Authorized exception.

Note: This setting should be used when user registration is disabled (ckan.auth.create_user_via_web =
False), otherwise users can just create an account to see other users details.

ckan.auth.public_activity stream_detail

Example:

[ckan.auth.public_activity_stream_detail = true

Default value: False

Restricts access to ‘view this version’ and ‘changes’ in the Activity Stream pages. These links provide users with the
full edit history of datasets etc - what they showed in the past and the diffs between versions. If this option is set to
False then only admins (e.g. whoever can edit the dataset) can see this detail. If set to True, anyone can see this detail
(assuming they have permission to view the dataset etc).

3.21. Configuration Options 141

CKAN documentation, Release 2.11.0a0

ckan.auth.allow_dataset_collaborators

Example:

[ckan.auth.allow_dataset_collaborators = true

Default value: False

Enables or disable collaborators in individual datasets. If True, in addition to the standard organization based permis-
sions, users can be added as collaborators to individual datasets with different roles, regardless of the organization they
belong to. For more information, check the documentation on Dataset collaborators.

Warning: If this setting is turned off in a site where there already were collaborators created, you must reindex all
datasets to update the permission labels, in order to prevent access to private datasets to the previous collaborators.

ckan.auth.allow_admin_collaborators

Example:

[ckan .auth.allow_admin_collaborators = true

Default value: False

Allows dataset collaborators to have the “Admin” role, allowing them to add more collaborators or remove existing
ones. By default, collaborators can only be managed by administrators of the organization the dataset belongs to. For
more information, check the documentation on Dataset collaborators.

Warning: If this setting is turned off in a site where admin collaborators have been already created, existing
collaborators with role “admin” will no longer be able to add or remove collaborators, but they will still be able to
edit and access the datasets that they are assigned to.

ckan.auth.allow_collaborators_to_change_owner_org

Example:

[ckan .auth.allow_collaborators_to_change_owner_org = true

Default value: False

Allows dataset collaborators to change the owner organization of the datasets they are collaborators on. Defaults to
False, meaning that collaborators with role admin or editor can edit the dataset metadata but not the organization field.

142 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.auth.create_default_api_keys

Example:

[ckan. auth.create_default_api_keys = true

Default value: False

Determines if an API key should be automatically created for every user when creating a user account. If set to False
(the default value), users can manually create an API token from their profile instead. See Authentication and API
tokens: for more details.

ckan.auth.login_view

Default value: user.login

The name of the view to redirect to when the user needs to log in

ckan.auth.reveal_private_datasets

Default value: False

Determines whether unauthorised requests for private datasets should have the existence of the datasets revealed (True)
or hidden (False). If True, then unauthenticated requests will be redirected to the login page, and redirected back to the
dataset after logging in, while authenticated but unauthorised requests will receive HTTP 403 Forbidden. If False, all
unauthorised requests will receive HTTP 404 Not Found. Default is False.

ckan.auth.enable_cookie_auth_in_api

Default value: True

When set to False, cookie-based authentication is entirely ignored in all API requests, and authentication must be always
done using API Tokens. Note that this will break some existing JS modules from the frontend that perform API calls,
so it should be used with caution.

ckan.auth.route_after_login

Default value: dashboard.datasets

Allows to customize the route that the user will get redirected to after a successful login.

CSRF Protection

WTF_CSRF_ENABLED

Default value: True

Set to False to disable all CSRF protection.

3.21. Configuration Options 143

CKAN documentation, Release 2.11.0a0

WTF_CSRF_CHECK_DEFAULT

Default value: True

When using the CSRF protection extension, this controls whether every view is protected by default.

WTF_CSRF_SECRET_KEY

Default value: none

Random data for generating secure tokens. If not provided, the value of SECRET_KEY will be used.

WTF_CSRF_METHODS

Default value: POST PUT PATCH DELETE
HTTP methods to protect from CSRF.

WTF_CSRF_FIELD_NAME

Default value: _csrf_token

Name of the form field and session key that holds the CSRF token.

WTF_CSRF_HEADERS

Default value: X-CSRFToken X-CSRF-Token
HTTP headers to search for CSRF token when it is not provided in the form.

WTF_CSRF_TIME_LIMIT

Default value: 3600

Max age in seconds for CSRF tokens. This value is capped by the lifetime of the session.

WTF_CSRF_SSL_STRICT

Default value: True

Whether to enforce the same origin policy by checking that the referrer matches the host. Only applies to HTTPS
requests. Default is True.

144 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

WTF_I18N_ENABLED

Default value: True

Set to False to disable Flask-Babel 118N support. Also set to False if you want to use WTForms’s built-in messages
directly, see more info here.

ckan.csrf_protection.ignore_extensions

Default value: True

Exempt plugins blueprints from CSRF protection.

Warning: This feature will be deprecated in future versions.

Flask-Login Remember me cookie settings

REMEMBER_COOKIE_NAME

Default value: remember_token

The name of the cookie to store the “remember me” information in.

REMEMBER_COOKIE_DURATION

Default value: 31536000

The amount of time before the cookie expires, as a datetime.timedelta object or integer seconds.

REMEMBER_COOKIE_DOMAIN

Default value: none

If the “Remember Me” cookie should cross domains, set the domain value here (i.e. .example.com would allow the
cookie to be used on all subdomains of example.com).

REMEMBER_COOKIE_PATH

Default value: /

Limits the “Remember Me” cookie to a certain path.

3.21. Configuration Options 145

CKAN documentation, Release 2.11.0a0

REMEMBER_COOKIE_SECURE

Default value: False

Restricts the “Remember Me” cookie’s scope to secure channels (typically HTTPS).

REMEMBER_COOKIE_HTTPONLY

Default value: True

Prevents the “Remember Me” cookie from being accessed by client-side scripts.

REMEMBER_COOKIE_REFRESH_EACH_REQUEST

Default value: False

If set to True the cookie is refreshed on every request, which bumps the lifetime. Works like Flask’s SES-
SION_REFRESH_EACH_REQUEST.

REMEMBER_COOKIE_SAMESITE

Default value: None

Restricts the “Remember Me” cookie to first-party or same-site context.

API Token Settings

api_token.nbytes

Example:

[api_token .nbytes = 20

Default value: 32

Number of bytes used to generate unique id for API Token.

api_token.jwt.encode.secret

Example:

[api_token.jwt.encode.secret = file:/path/to/private/key]

Default value: none
A key suitable for the chosen algorithm(api_token. jwt.algorithm):
* for asymmetric algorithms(RS256): path to private key with file: prefix. l.e file: /path/private/key

e for symmetric algorithms(HS256): plain string, sufficiently long for security with string: prefix. ILe
string:123abc...

146 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Note: For symmetric algorithms this value must be identical to api_token.jwt.decode.secret. The algorithm used is
controlled by the api_token.jwt.algorithm option.

Value must have prefix, which defines its type. Supported prefixes are:
e string: - Plain string, will be used as is.
e file: - Path to file. Content of the file will be used as key.

If not provided, "string:" + SECRET_KEY is used.

api_token.jwt.decode.secret

Example:

[api_token.jwt.decode.secret = file:/path/to/public/key.pub]

Default value: none
A key suitable for the chosen algorithm(api_token. jwt.algorithm):
* for asymmetric algorithms(RS256): path to public key with file: prefix. I.e file:/path/public/key.pub

e for symmetric algorithms(HS256): plain string, sufficiently long for security with string: prefix. ILe
string:123abc...

Note: For symmetric algorithms this value must be identical to api_token.jwt.encode.secret. The algorithm used is
defined by the api_token.jwt.algorithm option.

Value must have prefix, which defines it’s type. Supported prefixes are:
e string: - Plain string, will be used as is.
e file: - Path to file. Content of the file will be used as key.

If not provided, "string:" + SECRET_KEY is used.

api_token.jwt.algorithm

Example:

[api_token.jwt.algorithm = RS256

Default value: HS256
Algorithm to sign the token with, e.g. “ES256”, “RS256”

Depending on the algorithm, additional restrictions may apply to api_token.jwt.decode.secret and
api_token.jwt.encode.secret. For example, RS256 implies that api_token.jwt.encode.secret contains RSA pri-
vate key and api_token.jwt.decode.secret contains public key. Whereas HS256(default value) requires both
api_token.jwt.decode.secret and api_token.jwt.encode.secret to have exactly the same value.

3.21. Configuration Options 147

CKAN documentation, Release 2.11.0a0

Search Settings

ckan.site_id
Example:
[ckan. site_id = my_ckan_instance J

Default value: default

CKAN uses Solr to index and search packages. The search index is linked to the value of the ckan.site_id, so if
you have more than one CKAN instance using the same solr_url, they will each have a separate search index as long
as their ckan.site_id values are different. If you are only running a single CKAN instance then this can be ignored.

Note: If you change this value, you need to rebuild the search index.

solr_url

Example:

[solr_url = http://solr.okfn.org:8983/solr/ckan-schema-2.0]

Default value: none

This configures the Solr server used for search. The Solr schema found at that URL must be one of the ones in ckan/
config/solr (generally the most recent one). A check of the schema version number occurs when CKAN starts.

Optionally, solr_user and solr_password can also be configured to specify HTTP Basic authentication details for
all Solr requests.

Note: If you change this value, you need to rebuild the search index.

solr_user

Default value: none

User to use in HTTP Basic Authentication when connecting to Solr

solr_password

Default value: none

Password to use in HTTP Basic Authentication when connecting to Solr

148 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.search.remove_deleted_packages

Default value: True

By default, deleted datasets are removed from the search index so are no longer available in searches. To keep them
in the search index, set this setting to False. This will enable the include_deleted parameter in the ckan.logic.
action.get.package_search() API action.

ckan.search.solr_commit

Default value: True

Make ckan commit changes solr after every dataset update change. Turn this to false if on solr 4.0 and you have
automatic (soft)commits enabled to improve dataset update/create speed (however there may be a slight delay before
dataset gets seen in results).

ckan.search.solr_allowed_query_parsers

Example:

[ckan.search.solr_allowed_query_parsers = ['bool', 'knn']

Default value: none

Local parameters are not allowed when passing queries to Solr. An exception to this is when passing local
parameters for special query parsers, that need to be enabled explicitly using this config option. For instance,

the example provided would allow sending queries like the following::
search_params[“q”’] = “{!bool must=test}...” search_params[“q”] = “{'knn field=vector topK=10}...”

ckan.search.show_all_types

Example:

[ckan. search.show_all_types = dataset

Default value: dataset

Controls whether a search page (e.g. /dataset) should also show custom dataset types. The default is false meaning
that no search page for any type will show other types. true will show other types on the /dataset search page. Any
other value (e.g. dataset or document will be treated as a dataset type and that type’s search page will show datasets
of all types.

ckan.search.default_include_private

Default value: True

Controls whether the default search page (/dataset) should include private datasets visible to the current user or only
public datasets visible to everyone.

3.21. Configuration Options 149

CKAN documentation, Release 2.11.0a0

ckan.search.default_package_sort

Example:

[ckan.search.default_package_sort = name asc

Default value: score desc, metadata_modified desc

Controls whether the default search page (/dataset) should different sorting parameter by default when the request

does not specify sort.

search.facets.limit

Example:

[search.facets.limit = 100

Default value: 50

Sets the default number of searched facets returned in a query.

search.facets.default

Example:

[search.facets.default =10

Default value: 10

Default number of facets shown in search results.

ckan.extra_resource_fields

Example:

[ckan.extra_resource_fields = alt_url

Default value: none

List of the extra resource fields that would be used when searching.

ckan.search.rows_max

Example:

[ckan. search.rows_max = 1000

Default value: 1000
Maximum allowed value for rows returned. Specifically this limits:
* package_search’s rows parameter

e group_show and organization_show’s number of
include_datasets=true

datasets returned when specifying

150

Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.group_and_organization_list_max

Example:

[ckan. group_and_organization_list_max = 1000

Default value: 1000
Maximum number of groups/organizations returned when listing them. Specifically this limits:
e group_list’s limit when all_fields=false

e organization_list’s 1imit when all_fields=false

ckan.group_and_organization_list_all_fields_max

Example:

[ckan .group_and_organization_list_all_fields_max = 100

Default value: 25
Maximum number of groups/organizations returned when listing them in detail. Specifically this limits:
e group_list’s limit when all_fields=true

e organization_list’s limit when all_fields=true

solr_timeout

Example:

[solr_timeout = 120

Default value: 60

The option defines the timeout in seconds until giving up on a request. Raising this value might help you if you
encounter a timeout exception.

Redis Settings

ckan.redis.url

Example:

[ckan .redis.url = redis://localhost:7000/1

Default value: redis://localhost:6379/0

URL to your Redis instance, including the database to be used.

3.21. Configuration Options 151

CKAN documentation, Release 2.11.0a0

CORS Settings

ckan.cors.origin_allow_all

Example:

[ckan. cors.origin_allow_all = true J

Default value: False

This setting must be present to enable CORS. If True, all origins will be allowed (the response header Access-Control-
Allow-Origin is set to “*”). If False, only origins from the ckan.cors.origin_whitelist setting will be allowed.

ckan.cors.origin_whitelist

Example:

[ckan.cors.origin_whitelist = http://www.myremotedomainl.com http://myremotedomainl.com

| —

Default value: none

A space separated list of allowable origins. This setting is used when ckan.cors.origin_allow_all = False.

Plugins Settings

ckan.plugins

Example:

[ckan.plugins = activity scheming_datasets datatables_view datastore xloader J

Default value: none

Specify which CKAN plugins are to be enabled.

Warning: If you specify a plugin but have not installed the code, CKAN will not start.

Format as a space-separated list of the plugin names. The plugin name is the key in the [ckan.plugins] section of
the extension’s setup.py. For more information on plugins and extensions, see Extending guide.

Note: The order of the plugin names in the configuration file influences the order that CKAN will load the plugins in.
As long as each plugin class is implemented in a separate Python module (i.e. in a separate Python source code file),
the plugins will be loaded in the order given in the configuration file.

When multiple plugins are implemented in the same Python module, CKAN will process the plugins in the order that
they’re given in the config file, but as soon as it reaches one plugin from a given Python module, CKAN will load all
plugins from that Python module, in the order that the plugin classes are defined in the module.

For simplicity, we recommend implementing each plugin class in its own Python module.

Plugin loading order can be important, for example for plugins that add custom template files: templates found in
template directories added earlier will override templates in template directories added later.

152 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

Todo: Fix CKAN’s plugin loading order to simply load all plugins in the order they’re given in the config file,

regardless of which Python modules they’re implemented in.

ckan.resource_proxy.timeout

Default value: 5

Timeout in seconds to use on Resource Proxy requests.

Front-End Settings

ckan.site_title

Example:

[ckan.site_title = Open Data Scotland

Default value: CKAN

This sets the name of the site, as displayed in the CKAN web interface.

ckan.site_description

Example:

{ckan.site_description = The easy way to get, use and share data

Default value: none

This is for a description, or tag line for the site, as displayed in the header of the CKAN web interface.

ckan.site_intro_text

Example:

[ckan.site_intro_text = Nice introductory paragraph about CKAN or the site in general.

Default value: none

This is for an introductory text used in the default template’s index page.

3.21. Configuration Options

153

CKAN documentation, Release 2.11.0a0

ckan.site_logo

Example:

[ckan .site_logo = /images/ckan_logo_fullname_long.png]

Default value: /base/images/ckan-1logo.png

This sets the logo used in the title bar.

ckan.site_about

Example:

[ckan.site_about = A _community-driven_ catalogue of _open data_ for the Greenfield area.]

Default value: none
Format tips:
» multiline strings can be used by indenting following lines

¢ the format is Markdown

Note: Whilst the default text is translated into many languages (switchable in the page footer), the text in this con-
figuration option will not be translatable. For this reason, it’s better to overload the snippet in home/snippets/
about_text.html. For more information, see Theming guide.

ckan.theme

Example:

[ckan. theme = my-extension/theme-asset]

Default value: css/main

With this option, instead of using the default css/main asset with the theme, you can use your own.

ckan.favicon

Example:

ckan. favicon = http://okfn.org/wp-content/themes/okfn-master-wordpress-theme/images/
—.favicon.ico

Default value: /base/images/ckan.ico

This sets the site’s favicon. This icon is usually displayed by the browser in the tab heading and bookmark.

154 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.datasets_per_page

Example:

[ckan. datasets_per_page = 10]

Default value: 20

This controls the pagination of the dataset search results page. This is the maximum number of datasets viewed per
page of results.

package_hide_extras

Example:

[package_hide_extras = my_private_field other_field }

Default value: none

This sets a space-separated list of extra field key values which will not be shown on the dataset read page.

Warning: While this is useful to e.g. create internal notes, it is not a security measure. The keys will still be
available via the API and in revision diffs.

ckan.recaptcha.publickey

Default value: none

The public key for your reCAPTCHA account, for example:

[ckan.recaptcha.publickey = 6Lc...-KLc]

To get a reCAPTCHA account, sign up at: http://www.google.com/recaptcha

ckan.recaptcha.privatekey

Default value: none

The private key for your reCAPTCHA account, for example:

[ckan.recaptcha.privatekey = 6Lc...-jP J

Setting both ckan.recaptcha.publickey and ckan.recaptcha.privatekey adds captcha to the user registration form. This
has been effective at preventing bots registering users and creating spam packages.

3.21. Configuration Options 155

http://www.google.com/recaptcha

CKAN documentation, Release 2.11.0a0

ckan.featured_groups

Example:

[ckan. featured_groups = group_one

Default value: none

Defines a list of group names or group ids. This setting is used to display a group and datasets on the home page in the
default templates (1 group and 2 datasets are displayed).

ckan.featured_orgs

Example:

[ckan. featured_orgs = org_one

Default value: none

Defines a list of organization names or ids. This setting is used to display an organization and datasets on the home
page in the default templates (1 group and 2 datasets are displayed).

ckan.default_group_sort

Example:

[ckan.default_group_sort = name

Default value: title

Defines if some other sorting is used in group_list and organization_list by default when the request does not specify
sort.

ckan.gravatar_default

Example:

[ckan .gravatar_default = disabled

Default value: identicon

This controls the default gravatar style. Gravatar is used by default when a user has not set a custom profile picture,
but it can be turn completely off by setting this option to “disabled”. In that case, a placeholder image will be shown
instead, which can be customized overriding the templates/user/snippets/placeholder.html template.

156 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.debug_supress_header

Example:

[ckan.debug_supress_header = false

Default value: False

This configs if the debug information showing the controller and action receiving the request being is shown in the
header.

Note: This info only shows if debug is set to True.

ckan.site_custom_css

Default value: none

Custom CSS directives to include on all CKAN pages.

Resource Views Settings

ckan.views.default_views

Example:

[ckan.views.default_views = image_view webpage_view datatables_view

Default value: image_view datatables_view

Defines the resource views that should be created by default when creating or updating a dataset. From this list only
the views that are relevant to a particular resource format will be created. This is determined by each individual view.

If not present (or commented), the default value is used. If left empty, no default views are created.

Note: You must have the relevant view plugins loaded on the ckan.plugins setting to be able to create the de-
fault views, eg:: ckan.plugins = image_view webpage_view geo_view datatables_view ... ckan.views.default_views =
image_view webpage_view datatables_view

Theming Settings

ckan.template_title_delimiter

Example:

[ckan.template_title_delimiter =

Default value: -

This sets the delimiter between the site’s subtitle (if there’s one) and its title, in HTML’s <title>.

3.21. Configuration Options 157

CKAN documentation, Release 2.11.0a0

extra_template_paths

Example:

[extra_template_paths = /home/okfn/brazil_ckan_config/templates

Default value: none

Use this option to specify where CKAN should look for additional templates, before reverting to the ckan/templates
folder. You can supply more than one folder, separating the paths with a comma ().

For more information on theming, see Theming guide.

extra_public_paths

Example:

[extra_public_paths = /home/okfn/brazil_ckan_config/public

Default value: none

To customise the display of CKAN you can supply replacements for static files such as HTML, CSS, script and PNG
files. Use this option to specify where CKAN should look for additional files, before reverting to the ckan/public
folder. You can supply more than one folder, separating the paths with a comma (,).

For more information on theming, see Theming guide.

ckan.base_public_folder

Example:

[ckan.base_public_folder = public

Default value: public

This config option is used to configure the base folder for static files used by CKAN core. Starting CKAN 2.11 it only
accepts: public as a value. (This variable is kept for backwards compatibility when updating Bootstrap versions.)

ckan.base_templates_folder

Example:

[ckan.base_templates_folder = templates

Default value: templates

This config option is used to configure the base folder for templates used by CKAN core. Starting CKAN 2.11 it only
accepts: templates as a value. (This variable is kept for backwards compatibility when updating Bootstrap versions.)

158 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.default.package_type

Default value: dataset
Default type of dataset that will be used in the UI links (eg. “New Dataset”).

Use this option to change the dataset type that is used site-wide. Only existing dataset types can be used as a value for
this option. Upon setting a custom value, the following happens:

* all new datasets have their type field set to the custom value(if no explicit value provided)
* all labels(e.g. “Create a Dataset”, “My datasets”, “Search datasets..”) are adapted to the custom value
e all default links(e.g. /dataset/new, /dataset/<name>/resource) are adapted to the custom value

If labels require additional changes, register a chained helpers for humanize_entity_type (). For example, setting
a dataset type camel_photo as default, will turn the “Datasets” link in the header into “Camel-photos”. If “Camel
Photos” is expected, the code below can be used:

@p.toolkit.chained_helper

def humanize_entity_type(next_helper: Callable[..., Any],
entity_type: str, object_type: str, purpose: str):
if purpose == "main nav":

return "Camel Photos"

return next_helper(entity_type, object_type, purpose)

See humanize_entity_type () for additional details.

ckan.default.group_type

Default value: group
Default type of group that used in UI links(eg. “New Group” button, “Groups” link in header)

Same as ckan.default.package_type, but for groups.

ckan.default.organization_type

Default value: organization
Default type of group that used in UI links(eg. “New Organization” button, “Organizations” link in header)

Same as ckan.default.package_type, but for organizations.

Storage Settings

ckan.storage_path

Example:

[ckan.storage_path = /var/lib/ckan/default

Default value: none

This defines the location of where CKAN will store all uploaded data.

3.21. Configuration Options 159

CKAN documentation, Release 2.11.0a0

ckan.max_resource_size

Example:

[ckan.max_resource_size = 100

Default value: 10

The maximum in megabytes a resources upload can be.

ckan.max_image_size

Example:

[ckan.max_image_size = 10

Default value: 2

The maximum in megabytes an image upload can be.

Uploader Settings

ckan.upload.user.types

Example:

[ckan.upload.user.types = image text

Default value: image

File types allowed to upload as user’s avatar. No restrictions applied when empty

ckan.upload.user.mimetypes

Example:

[ckan.upload.user.mimetypes = image/png text/svg

Default value: image/png image/gif image/jpeg

File MIMETypes allowed to upload as user’s avatar. No restrictions applied when empty

ckan.upload.group.types

Example:

[ckan.upload.group.types = image text

Default value: image

File types allowed to upload as group image. No restrictions applied when empty

160 Chapter 3.

Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.upload.group.mimetypes

Example:

[ckan.upload.group.mimetypes = image/png text/svg

Default value: image/png image/gif image/jpeg

File MIMETypes allowed to upload as group image. No restrictions applied when empty

Webassets Settings

ckan.webassets.path

Example:

[ckan .webassets.path = /var/lib/ckan/webassets

Default value: none

In order to increase performance, static assets (CSS and JS files) included via an asset tag inside templates are com-
piled only once, when the asset is used for the first time. All subsequent requests to the asset will use the existing file.
CKAN stores the compiled webassets in the file system, in the path specified by this config option.

ckan.webassets.url

Example:

[ckan .webassets.url = /serve/assets/from/here

Default value: /webassets

URL path for endpoint that serves webassets.

ckan.webassets.use_x_sendfile

Example:

[ckan.webassets.use_x_sendfile = True

Default value: False

When serving static files, if this setting is True, the applicatin will set the X-Sendfile header instead of serving the
files directly with Flask. This will increase performance when serving the assets, but it requires that the web server (eg
Nginx) supports the X-Sendfile header. See X-Sendfile for more information.

3.21. Configuration Options 161

CKAN documentation, Release 2.11.0a0

User Settings

ckan.user_list_limit

Example:

[ckan .user_list_limit = 50

Default value: 20

This controls the number of users to show in the Users list. By default, it shows 20 users.

ckan.user_reset_landing_page

Example:

[ckan.user_reset_landing_page = dataset

Default value: home.index

This controls the page where users will be sent after requesting a password reset. This is ordinarily the home page, but
specific sites may prefer somewhere else.

Activity Streams Settings

ckan.activity_streams_enabled

Example:

[ckan.activity_streams_enabled = false

Default value: True

Turns on and off the activity streams used to track changes on datasets, groups, users, etc. The activity feature has been
moved to a separate activity plugin. To keep showing the activities in the UI and enable the activity related API actions
you need to add the activity plugin to the ckan.plugins config option.

ckan.activity_streams_email_notifications

Example:

[ckan .activity_streams_email_notifications = false

Default value: False

Turns on and off the activity streams’ email notifications. You’d also need to setup a cron job to send the emails. For
more information, visit Email notifications.

162 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.activity_list_limit

Example:

[ckan.activity_list_limit = 31

Default value: 31

This controls the number of activities to show in the Activity Stream.

ckan.activity_list_limit_max

Example:

[ckan .activity_list_limit_max = 100

Default value: 100

Maximum allowed value for Activity Stream limit parameter.

ckan.email_notifications_since

Example:

[ckan.email_notifications_since = 2 days

Default value: 2 days

Email notifications for events older than this time delta will not be sent. Accepted formats: ‘2 days’, ‘14 days’, ‘4:35:00°
(hours, minutes, seconds), ‘7 days, 3:23:34’, etc.

ckan.hide_activity_from_users

Example:

[ckan.hide_activity_from_users = sysadmin

Default value: none

Hides activity from the specified users from activity stream. If unspecified, it'll use ckan.site_id to hide activity by the
site user. The site user is a sysadmin user on every ckan user with a username that’s equal to ckan.site_id. This user is
used by ckan for performing actions from the command-line.

Feeds Settings

ckan.feeds.author_name

Example:

[ckan.feeds.author_name = Michael Jackson

Default value: none

This controls the feed author’s name. If unspecified, it’ll use ckan.site_id.

3.21. Configuration Options 163

CKAN documentation, Release 2.11.0a0

ckan.feeds.author_link

Example:

[ckan. feeds.author_link = http://okfn.org

Default value: none

This controls the feed author’s link. If unspecified, it’ll use ckan.site_url.

ckan.feeds.authority_name

Example:

[ckan.feeds.authority_name = http://okfn.org

Default value: none

The domain name or email address of the default publisher of the feeds and elements. If unspecified, it’ll use
ckan.site_url.

ckan.feeds.date

Example:

[ckan. feeds.date = 2012-03-22

Default value: none

A string representing the default date on which the authority_name is owned by the publisher of the feed.

ckan.feeds.limit

Default value: 20

Number of items returned in the feeds

Internationalisation Settings

ckan.locale_default

Example:

[ckan.locale_default = de

Default value: en

Use this to specify the locale (language of the text) displayed in the CKAN Web UI. This requires a suitable mo file
installed for the locale in the ckan/i18n. For more information on internationalization, see Translating CKAN. If you
don’t specify a default locale, then it will default to the first locale offered, which is by default English (alter that with
ckan.locales_offered and ckan.locales_filtered_out.

164 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.locales_offered

Example:

[ckan.locales_offered = en de fr

Default value: none

By default, all locales found in the ckan/i18n directory will be offered to the user. To only offer a subset of these, list
them under this option. The ordering of the locales is preserved when offered to the user.

ckan.locales filtered out

Example:

[ckan.locales_filtered_out = pl ru }

Default value: none

If you want to not offer particular locales to the user, then list them here to have them removed from the options.

ckan.locale_order

Example:

[ckan.locale_order = fr de J

Default value: none

If you want to specify the ordering of all or some of the locales as they are offered to the user, then specify them here
in the required order. Any locales that are available but not specified in this option, will still be offered at the end of
the list.

ckan.i18n_directory

Example:

[ckan. i18n_directory = /opt/locales/il8n/

Default value: none

By default, the locales are searched for in the ckan/i18n directory. Use this option if you want to use another folder.

ckan.i18n.extra_directory

Example:

[ckan .118n.extra_directory = /opt/ckan/extra_translations/

Default value: none

If you wish to add extra translation strings and have them merged with the default ckan translations at runtime you can
specify the location of the extra translations using this option.

3.21. Configuration Options 165

CKAN documentation, Release 2.11.0a0

ckan.i18n.extra_gettext_domain

Example:

[ckan. i18n.extra_gettext_domain = mydomain

Default value: none

You can specify the name of the gettext domain of the extra translations. For example if your translations are stored as
i18n/<locale>/LC_MESSAGES/somedomain.mo you would want to set this option to somedomain

ckan.i1i8n.extra_locales

Example:

[ckan.ilSn.extra_locales = fr es de

Default value: none

If you have set an extra i18n directory using ckan.i18n.extra_directory, you should specify the locales that have
been translated in that directory in this option.

ckan.i18n.rtl_languages

Example:

[ckan.ilSn.rtl_languages = he ar fa_IR

Default value: he ar fa_IR

Allows to modify the right-to-left languages

ckan.i18n.rtl_theme

Example:

[ckan.ilSn.rtl_theme = my-extension/my-custom-rtl-asset

Default value: css/main-rtl

Allows to override the default rtl asset used for the languages defined in ckan.i18n.rtl_languages.

ckan.display_timezone

Example:

[ckan .display_timezone = Europe/Zurich

Default value: UTC

By default, all datetimes are considered to be in the UTC timezone. Use this option to change the displayed dates on
the frontend. Internally, the dates are always saved as UTC. This option only changes the way the dates are displayed.

166 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

The valid values for this options [can be found at pytz](http://pytz.sourceforge.net/#helpers) (pytz.all_timezones).
You can specify the special value server to use the timezone settings of the server, that is running CKAN.

ckan.root_path

Example:

[ckan.root_path = /my/custom/path/{{LANG}}/foo

Default value: none
This setting is used to construct URLs inside CKAN. It specifies two things:

* At which path CKAN is mounted: By default it is assumed that CKAN is mounted at /, i.e. at the root of your
web server. If you have configured your web server to serve CKAN from a different mount point then you need
to duplicate that setting here.

* Where the locale is added to an URL: By default, URLs are formatted as /some/url when using the default
locale, or /de/some/url when using the de locale, for example. When ckan.root_path is set it must include
the string {{LANG}}, which will be replaced by the locale.

Important: The setting must contain {{LANG}} exactly as written here. Do not add spaces between the brackets.

See also:
The host of your CKAN installation can be set via ckan.site_url.

The CKAN repoze config file who.ini file will also need to be edited by adding the path prefix to the options in the
[plugin:friendlyform] section: login_form_url, post_login_url and post_logout_url. Do not change
the login/logout_handler_path options.

ckan.resource_formats

Example:

[ckan .resource_formats = /path/to/resource_formats

Default value: /<CKAN_ROOT>/ckan/config/resource_formats.json

The purpose of this file is to supply a thorough list of resource formats and to make sure the formats are normalized
when saved to the database and presented.

The format of the file is a JSON object with following format:

[["Format", "Description", "Mimetype", ["List of alternative representations"]]

Please look in ckan/config/resource_formats.json for full details and and as an example.

3.21. Configuration Options 167

http://pytz.sourceforge.net/#helpers

CKAN documentation, Release 2.11.0a0

Form Settings

ckan.dataset.create_on_ui_requires_resources

Example:

[ckan. dataset.create_on_ui_requires_resources = false

Default value: True

If False, there is no need to add any resources when creating a new dataset.

package_new_return_url

Default value: none

The URL to redirect the user to after they’ve submitted a new package form, example:

[package_new_return_url = http://datadotgc.ca/new_dataset_complete?name=<NAME>]

This is useful for integrating CKAN’s new dataset form into a third-party interface, see Form Integration.

The <NAME> string is replaced with the name of the dataset created.

package_edit_return_url

Default value: none

The URL to redirect the user to after they’ve submitted an edit package form, example:

[package_edit_return_url = http://datadotgc.ca/dataset/<NAME> }

This is useful for integrating CKAN’s edit dataset form into a third-party interface, see Form Integration.

The <NAME> string is replaced with the name of the dataset that was edited.

licenses_group_url

Example:

[licenses_group_url = file:///path/to/my/local/json-list-of-licenses. json

Default value: none

A url pointing to a JSON file containing a list of license objects. This list determines the licenses offered by the system
to users, for example when creating or editing a dataset.

This is entirely optional - by default, the system will use an internal cached version of the CKAN list of licenses available
from the http://licenses.opendefinition.org/licenses/groups/ckan.json.

More details about the license objects - including the license format and some example license lists - can be found at
the Open Licenses Service.

168 Chapter 3. Maintainer’s guide

http://licenses.opendefinition.org/licenses/groups/ckan.json
http://licenses.opendefinition.org/

CKAN documentation, Release 2.11.0a0

Email settings

smtp.server

Example:

[smtp .server = smtp.example.com:587

Default value: localhost

The SMTP server to connect to when sending emails with optional port.

smtp.starttls

Example:

[smtp .starttls = true

Default value: False

Whether or not to use STARTTLS when connecting to the SMTP server.

smtp.user

Example:

[smtp .user = username@example.com

Default value: none

The username used to authenticate with the SMTP server.

smtp.password

Example:

[smtp.password = yourpass

Default value: none

The password used to authenticate with the SMTP server.

smtp.mail_from

Example:

[smtp .mail_from = ckan@example.com

Default value: none

The email address that emails sent by CKAN will come from. Note that, if left blank, the SMTP server may insert its

own.

3.21. Configuration Options

169

CKAN documentation, Release 2.11.0a0

smtp.reply_to

Example:

[smtp .reply_to = noreply.example.com

Default value: none

The email address that will be used if someone attempts to reply to a system email. If left blank, no Reply-to will be
added to the email and the value of smtp.mail_from will be used.

email_to

Example:

[email_to = errors@example.com

Default value: none

This controls where the error messages will be sent to.

error_email_from

Example:

[error_email_from = ckan-errors@example.com

Default value: none

This controls from which email the error messages will come from.
Background Job Settings
ckan.jobs.timeout

Default value: 180

The option defines the timeout in seconds until giving up on a job

Resource Proxy settings

ckan.resource_proxy.max_file_size

Example:

[ckan .resource_proxy.max_file_size = 1048576

Default value: 1048576

This sets the upper file size limit for in-line previews. Increasing the value allows CKAN to preview larger files (e.g.
PDFs) in-line; however, a higher value might cause time-outs, or unresponsive browsers for CKAN users with lower
bandwidth.

170 Chapter 3. Maintainer’s guide

CKAN documentation, Release

2.11.0a0

ckan.resource_proxy.chunk_size

Example:

[ckan .resource_proxy.chunk_size = 8192

Default value: 4096

This sets size of the chunk to read and write when proxying. Raising this value might save some CPU cycles
no sense to lower it below the page size, which is default.

text_view settings

ckan.preview.text_formats

Example:

. It makes

[ckan.preview.text_formats = txt plain

Default value: text/plain txt plain

Space-delimited list of plain text based resource formats that will be rendered by the Text view plugin

ckan.preview.xml_formats

Example:

[ckan.preview.xml_formats = xml rdf rss

Default value: xml rdf rdf+xml owl+xml atom rss

Space-delimited list of XML based resource formats that will be rendered by the Text view plugin

ckan.preview.json_formats

Example:

[ckan.preview.json_formats = json

Default value: json

Space-delimited list of JSON based resource formats that will be rendered by the Text view plugin

ckan.preview.jsonp_formats

Default value: jsonp

Space-delimited list of JSONP based resource formats that will be rendered by the Text view plugin

3.21. Configuration Options

171

CKAN documentation, Release 2.11.0a0

image_view settings

ckan.preview.image_formats

Example:

[ckan.preview.image_formats = png jpeg jpg gif J

Default value: png jpeg jpg gif

Space-delimited list of image-based resource formats that will be rendered by the Image view plugin

datatables_view settings

ckan.datatables.page_length_choices

Example:

[ckan.datatables.page_length_choices = 20 50 100 500 1000 5000

Default value: 20 50 100 500 1000

Space-delimited list of the choices for the number of rows per page, with the lowest value being the default initial value.

Note: On larger screens, DataTables view will attempt to fill the table with as many rows that can fit using the lowest
closest choice.

ckan.datatables.state_saving

Example:

[ckan.datatables.state_saving = false

Default value: True

Enable or disable state saving. When enabled, DataTables view will store state information such as pagination position,
page length, row selection/s, column visibility/ordering, filtering and sorting using the browser’s localStorage. When
the end user reloads the page, the table’s state will be altered to match what they had previously set up.

This also enables/disables the “Reset” and “Share current view” buttons. “Reset” discards the saved state. ‘“Share
current view” base-64 encodes the state and passes it as a url parameter, acting like a “saved search” that can be used
for embedding and sharing table searches.

172 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.datatables.state duration

Example:

[ckan.datatables.state_duration = 86400

Default value: 7200

Duration (in seconds) for which the saved state information is considered valid. After this period has elapsed, the table’s
state will be returned to the default, and the state cleared from the browser’s localStorage.

Note: The value 0 is a special value as it indicates that the state can be stored and retrieved indefinitely with no time
limit.

ckan.datatables.data_dictionary_labels

Example:

[ckan .datatables.data_dictionary_labels = false

Default value: True

Enable or disable data dictionary integration. When enabled, a column’s data dictionary label will be used in the table
header. A tooltip for each column with data dictionary information will also be integrated into the header.

ckan.datatables.ellipsis_length

Example:

[ckan.datatables.ellipsis_length = 100

Default value: 100

The maximum number of characters to show in a cell before it is truncated. An ellipsis (...) will be added at the
truncation point and the full text of the cell will be available as a tooltip. This value can be overridden at the resource
level when configuring a DataTables resource view.

Note: The value 0 is a special value as it indicates that the column’s width will be determined by the column name,
and cell content will word-wrap.

ckan.datatables.date format

Example:

[ckan.datatables.date_format = YYYY-MM-DD dd ww

Default value: 1111

The moment.js date format to use to convert raw timestamps to a user-friendly date format using CKAN’s current locale
language code. This value can be overridden at the resource level when configuring a DataTables resource view.

3.21. Configuration Options 173

https://momentjscom.readthedocs.io/en/latest/moment/04-displaying/01-format/

CKAN documentation, Release 2.11.0a0

Note: The value NONE is a special value as it indicates that no date formatting will be applied and the raw ISO-8601
timestamp will be displayed.

ckan.datatables.default_view

Example:

[ckan .datatables.default_view = list

Default value: table

Indicates the default view mode of the DataTable (valid values: table or 1ist). Table view is the typical grid layout,
with horizontal scrolling. List view is a responsive table, automatically hiding columns as required to fit the browser
viewport. In addition, list view allows the user to view, copy and print the details of a specific row. This value can be
overridden at the resource level when configuring a DataTables resource view.

ckan.datatables.null_label

Example:

[ckan.datatables.null_label = N/A

Default value: none

The option defines the label used to display NoneType values for the front-end. This should be a string and can be
translated via po files.

Datastore settings

ckan.datastore.write_url

Example:

[ckan. datastore.write_url = postgresql://ckanuser:pass@localhost/datastore

Default value: postgresql://ckan_default:pass@localhost/datastore_default

The database connection to use for writing to the datastore (this can be ignored if you’re not using the DataStore
extension). Note that the database used should not be the same as the normal CKAN database. The format is the same
as in sglalchemy.url.

174 Chapter 3. Maintainer’s guide

CKAN documentation, Release 2.11.0a0

ckan.datastore.read_url

Example:

[ckan. datastore.read_url = postgresql://readonlyuser:pass@localhost/datastore

Default value: postgresql://datastore_default:pass@localhost/datastore_default

The database connection to use for reading from the datastore (this can be ignored if you’re not using the DataStore
extension). The database used must be the same used in ckan.datastore.write_url, but the user should be one with read
permissions only. The format is the same as in sqglalchemy.url.

ckan.datastore.sqlsearch.allowed_functions_file

Example:

[ckan .datastore.sqlsearch.allowed_functions_file = /path/to/my_allowed_functions.txt }

Default value: /<CKAN_ROOT>/ckanext/datastore/allowed_functions.txt

Allows to define the path to a text file listing the SQL functions that should be allowed to run on queries sent to the
datastore_search_sql () function (if enabled, see ckan.datastore.sqlsearch.enabled). Function names should be
listed one on each line, eg:

abbrev
abs
abstime

ckan.datastore.sqlsearch.enabled

Example:

[ckan. datastore.sqglsearch.enabled = true

Default value: False
This option allows you to enable the datastore_search_sql () action function, and corresponding API endpoint.
This action function has protections from abuse including:

e parsing of the query to prevent unsafe functions from being called, see
ckan.datastore.sqlsearch.allowed_functions_file

e parsing of the query to prevent multiple statements

* prevention of data modification by using a read-only database role

¢ use of explain to resolve tables accessed in the query to check against user permissions
* use of a statement timeout to prevent queries from running indefinitely

These protections offer some safety but are not designed to prevent all types of abuse. Depending on the sensitivity of
private data in your datastore and the likelihood of abuse of your site you may choose to disable this action function or
restrict its use with a TAuthFunctions plugin.

3.21. Configuration Options 175

CKAN documentation, Release 2.11.0a0

ckan.datastore.search.rows_default

Example:

[ckan. datastore.search.rows_default = 1000

Default value: 100

Default number of rows returned by datastore_search, unless the client specifies a different 1imit (up to ckan.
datastore.search.rows_max).

NB this setting does not affect datastore_search_sql.

ckan.datastore.search.rows_max

Example:

[ckan. datastore.search.rows_max = 1000000

Default value: 32000
Maximum allowed value for the number of rows returned by the datastore.
Specifically this limits:

* datastore_search’s limit parameter.

* datastore_search_sql queries have this limit inserted.

ckan.datastore.sqlalchemy.<OPTION)

Default value: none
Custom sqlalchemy config parameters used to establish the DataStore database connection.

To get the list of all the available properties check the SQLAlchemy documentation

ckan.datastore.default_fts_lang

Example:

[ckan .datastore.default_fts_lang = english

Default value: english

The default language used when creating full-text search indexes and querying them. It can be overwritten by the user
by passing the “lang” parameter to “datastore_search” and “datastore_create”.

176 Chapter 3. Maintainer’s guide

http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html#engine-creation-api

CKAN documentation, Release 2.11.0a0

ckan.datastore.default_fts_index_method

Example:

[ckan .datastore.default_fts_index_method = gist]

Default value: gist

The default method used when creating full-text search indexes. Currently it can be “gin” or “gist”. Refer to Post-
greSQL’s documentation to understand the characteristics of each one and pick the best for your instance.

Datapusher settings

ckan.datapusher.formats

Example:
[ckan.datapusher.formats = ¢csv xls J
Default value: csv xls xlsx tsv application/csv application/vnd.ms-excel application/vnd.

openxml formats-officedocument.spreadsheetml.sheet ods application/vnd.oasis.opendocument.
spreadsheet

File formats that will be pushed to the DataStore by the DataPusher. When adding or editing a resource which links to
a file in one of these formats, the DataPusher will automatically try to import its contents to the DataStore.

ckan.datapusher.url

Example:

[ckan. datapusher.url = http://127.0.0.1:8800/ J

Default value: none

DataPusher endpoint to use when enabling the datapusher extension. If you installed CKAN via Installing CKAN
Jfrom package, the DataPusher was installed for you running on port 8800. If you want to manually install the Data-
Pusher, follow the installation instructions.

ckan.datapusher.api_token

Default value: none

Starting from CKAN 2.10, DataPusher requires a valid API token to operate (see Authentication and API tokens), and
will fail to start if this option is not set.

3.21. Configuration Options 177

http://docs.ckan.org/projects/datapusher

CKAN documentation, Release 2.11.0a0

ckan.datapusher.callback_url_base

Example:

[ckan. datapusher.callback_url_base = http://ckan:5000/

Default value: none

Alternative callback URL for DataPusher when performing a request to CKAN. This is useful on scenarios where the
host where DataPusher is running can not access the public CKAN site URL.

ckan.datapusher.assume_task_stale_after

Example:

[ckan. datapusher.assume_task_stale_after = 86400 }

Default value: 3600

In case a DataPusher task gets stuck and fails to recover, this is the minimum amount of time (in seconds) after a
resource is submitted to DataPusher that the resource can be submitted again.

178 Chapter 3. Maintainer’s guide

CHAPTER
FOUR

API GUIDE

This section documents CKAN APIs, for developers who want to write code that interacts with CKAN sites and their

data.

CKAN'’s Action API is a powerful, RPC-style API that exposes all of CKAN’s core features to API clients. All of a
CKAN website’s core functionality (everything you can do with the web interface and more) can be used by external
code that calls the CKAN API. For example, using the CKAN API your app can:

Get JSON-formatted lists of a site’s datasets, groups or other CKAN objects:
http://demo.ckan.org/api/3/action/package_list
http://demo.ckan.org/api/3/action/group_list
http://demo.ckan.org/api/3/action/tag_list

Get a full JSON representation of a dataset, resource or other object:
http://demo.ckan.org/api/3/action/package_show?id=adur_district_spending
http://demo.ckan.org/api/3/action/tag_show?id=gold
http://demo.ckan.org/api/3/action/group_show?id=data-explorer

Search for packages or resources matching a query:
http://demo.ckan.org/api/3/action/package_search?q=spending
http://demo.ckan.org/api/3/action/resource_search?query=name:District%20Names
Create, update and delete datasets, resources and other objects

Get an activity stream of recently changed datasets on a site:

http://demo.ckan.org/api/3/action/recently_changed_packages_activity_list

Note:

CKAN’s FileStore and DataStore have their own APIs, see:
FileStore and file uploads

DataStore extension

Note:

For documentation of CKAN’s legacy API’s, see Legacy APIs.

179

http://demo.ckan.org/api/3/action/package_list
http://demo.ckan.org/api/3/action/group_list
http://demo.ckan.org/api/3/action/tag_list
http://demo.ckan.org/api/3/action/package_show?id=adur_district_spending
http://demo.ckan.org/api/3/action/tag_show?id=gold
http://demo.ckan.org/api/3/action/group_show?id=data-explorer
http://demo.ckan.org/api/3/action/package_search?q=spending
http://demo.ckan.org/api/3/action/resource_search?query=name:District%20Names
http://demo.ckan.org/api/3/action/recently_changed_packages_activity_list

CKAN documentation, Release 2.11.0a0

4.1 Legacy APIs

Warning: The legacy APIs documented in this section are provided for backwards-compatibility, but support for
new CKAN features will not be added to these APIs. These endpoints will be removed in the future.

Note: The REST API was deprecated in CKAN v2.0 and removed starting from CKAN v2.8.

4.1.1 Search API

Search resources are available at published locations. They are represented with a variety of data formats. Each resource
location supports a number of methods.

The data formats of the requests and the responses are defined below.

Search Resources

Here are the published resources of the Search API.

Search Resource Location

Dataset Search /search/dataset
Resource Search /search/resource
Revision Search /search/revision
Tag Counts /tag_counts

See below for more information about dataset and revision search parameters.

Search Methods

Here are the methods of the Search API.

Resource Method Request Response

Dataset Search POST Dataset-Search-Params Dataset-Search-Response
Resource Search POST Resource-Search-Params ~ Resource-Search-Response
Revision Search ~ POST Revision-Search-Params Revision-List

Tag Counts GET Tag-Count-List

It is also possible to supply the search parameters in the URL of a GET request, for example /api/search/dataset?
g=geodata&allfields=1.

180 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

Search Formats

Here are the data formats for the Search API.

Name Format

Dataset-Search-Params Resource- { Param-Key: Param-Value, Param-Key: Param-Value, ... } See below
Search-Params Revision-Search- for full details of search parameters across the various domain objects.
Params

Dataset-Search-Response
Resource-Search-Response
Revision-List

Tag-Count-List

{ count: Count-int, results: [Dataset, Dataset, ... | }

{ count: Count-int, results: [Resource, Resource, ... | }

[Revision-Id, Revision-Id, Revision-Id, ...] NB: Ordered with youngest
revision first. NB: Limited to 50 results at a time.

[[Name-String, Integer], [Name-String, Integer], ...]

Dataset Parameters

Param-Key Param-Value Examples Notes

q Search-String Criteria to search the

dataset fields for. URL-

encoded search text. (You

can also concatenate

words with a ‘+’ symbol

q=%22drug%20abuse%22 in a URL.) Search re-

g=tags:”’river pollution” sults must contain all the
specified words. You can
also search within specific
fields.

g=geodata
g=government+sweden

gjson JSON encoded options [‘q’:’geodata’] All search parameters can

be json-encoded and sup-
plied to this parameter as a
more flexible alternative in

GET requests.
title, tags, notes, groups, Search-String Search in a particular a
Zuthor, maintainer, up- title=uk&tags=health field.
ate_frequency, or any
‘extra’ field name e.g. department=environment
department
tags=health&tags=pollution
tags=river%20pollution
order_by field-name (default=rank) order_by=name Specify either rank or the
field to sort the results by
offset, limit result-int (defaults: off- offset=40&limit=20 Pagination options. Offset
set=0, limit=20) is the number of the first
result and limit is the num-
ber of results to return.
all_fields 0 (default) or 1 all_fields=1 Each matching search re-

sult is given as either a
dataset name (0) or the full
dataset record (1).

4.1. Legacy APIs

181

CKAN documentation, Release 2.11.0a0

Note: filter_by_openness and filter_by_downloadable were dropped from CKAN version 1.5 onwards.

Note: Only public datasets can be accessed via the legacy search API, regardless of the provided authorization. If you
need to access private datasets via the API you will need to use the package_search method of the API guide.

Resource Parameters

Param-Key

Param-Value Example

Notes

url, format, description

gjson

hash

all_fields

offset, limit

Search-String

url=statistics.org

format=xIs

Criteria to search the
dataset fields for. URL-
encoded search text. This
search string must be
found somewhere within

description=Research+Instil the field to match. Case

insensitive.

JSON encoded options [‘url’:’www.statistics.org’] All search parameters can

be json-encoded and sup-
plied to this parameter as a
more flexible alternative in
GET requests.

Search-String hash=b0d7¢260-35d4- Searches for an match of
42ab-9e3d-c1f4db9bc2f0 the hash field. An exact

0 (default) or 1 all_fields=1

match or match up to the
length of the hash given.
Each matching search re-
sult is given as either an
ID (0) or the full resource
record

result-int (defaults: off- offset=40&limit=20 Pagination options. Offset

set=0, limit=20)

is the number of the first
result and limit is the num-
ber of results to return.

Note: Powerful searching from the command-line can be achieved with curl and the gjson parameter. In this case you
need to remember to escapt the curly braces and use url encoding (e.g. spaces become %20). For example:

curl 'http://thedatahub.org/api/search/dataset?qjson=\{"author":"The%20Stationery
mited"\}'

—%200ffice

Revision Parameters

Param-
Key

Param-
Value

Example

Notes

since_time Date-Time

since_id

Uuid

since_time=2010-05-
05T19:42:45.854533
since_id=6c9f32ef-1f93-4b2f-891b-
£fd01924ebe08

The time can be less precisely stated (e.g
2010-05-05).

The stated id will not be included in the re-
sults.

182

Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

4.1.2 Util API

The Util API provides various utility APIs — e.g. auto-completion APIs used by front-end javascript.

All Util APIs are read-only. The response format is JSON. Javascript calls may want to use the JSONP formatting.
dataset autocomplete

There an autocomplete API for package names which matches on name or title.

This URL:

[/api/Z/uti 1/dataset/autocomplete?incomplete=a%20novel

Returns:

{"ResultSet": {"Result": [{"match_field": "title", "match_displayed": "A Novel By.
—Tolstoy (annakarenina)", "name": "annakarenina", "title": "A Novel By Tolstoy"}]}}

tag autocomplete

There is also an autocomplete API for tags which looks like this:

This URL:

[/api/Z/util/tag/autocomplete?incomplete:ru

Returns:

[{"ResultSet": {"Result": [{"Name": "russian"}]}}

resource format autocomplete

Similarly, there is an autocomplete API for the resource format field which is available at:

[/api/Z/uti 1/resource/format_autocomplete?incomplete=cs

This returns:

[{"ResultSet": {"Result": [{"Format": "csv"}]}}

munge package name

For taking an readable identifier and munging it to ensure it is a valid dataset id. Symbols and whitespeace are converted
into dashes. Example:

[/api/uti1/dataset/munge_name?name:police%Z@spending%Z@figure $%202009

Returns:

["police—spending—figures—2®®9"

4.1. Legacy APIs 183

CKAN documentation, Release 2.11.0a0

munge title to package name

For taking a title of a package and munging it to a readable and valid dataset id. Symbols and whitespeace are converted
into dashes, with multiple dashes collapsed. Ensures that long titles with a year at the end preserves the year should it
need to be shortened. Example:

[/api/uti1/dataset/munge_title_to_name?titlezpolice :%20spending%20figures%202009]
Returns:

["police—spending—figures—2®®9”]
munge tag

For taking a readable word/phrase and munging it to a valid tag (name). Symbols and whitespeace are converted into
dashes. Example:

[/api/uti1/tag/munge?tag:water%2®quality J

Returns:

["water—quality"

4.1.3 Status Codes

Standard HTTP status codes are used to signal method outcomes.

Code Name
200 OK
201 OK and new object created (referred to in the Location header)

301 Moved Permanently

400 Bad Request

403 Not Authorized

404 Not Found

409 Conflict (e.g. name already exists)
500 Service Error

Note: On early CKAN versions, datasets were called “packages” and this name has stuck in some places, specially
internally and on API calls. Package has exactly the same meaning as “dataset”.

184 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

4.2 Making an API request

To call the CKAN API, post a JSON dictionary in an HTTP POST request to one of CKAN APIs URLs. The parameters
for the API function should be given in the JSON dictionary. CKAN will also return its response in a JSON dictionary.

One way to post a JSON dictionary to a URL is using the command-line client Curl. For example, to get a list of the
names of all the datasets in the data-explorer group on demo.ckan.org, install curl and then call the group_list
API function by running this command in a terminal:

[curl https://demo.ckan.org/api/3/action/group_list

The response from CKAN will look like this:

{

"help": "...",

"result": [
"data-explorer",
"department-of-ricky",
"geo-examples",
"geothermal-data",
"reykjavik",
"skeenawild-conservation-trust"

1,

"success": true

}

The response is a JSON dictionary with three keys:
1. "success": true or false.

The API aims to always return 200 OK as the status code of its HTTP response, whether there were errors with
the request or not, so it’s important to always check the value of the "success" key in the response dictionary
and (if success is false) check the value of the "error" key.

Note: If there are major formatting problems with a request to the API, CKAN may still return an HTTP response
with a 409, 400 or 500 status code (in increasing order of severity). In future CKAN versions we intend to remove
these responses, and instead send a 200 OK response and use the "success" and "error" items.

2. "result": the returned result from the function you called. The type and value of the result depend on which
function you called. In the case of the group_list function it’s a list of strings, the names of all the datasets
that belong to the group.

If there was an error responding to your request, the dictionary will contain an "error" key with details of the
error instead of the "result" key. A response dictionary containing an error will look like this:

{
"help": "Creates a package",
"success": false,

"error": {
"message": "Access denied",
"__type": "Authorization Error"

}

}

.

3. "help": the documentation string for the function you called.

4.2. Making an API request 185

https://curl.haxx.se/

CKAN documentation, Release 2.11.0a0

The same HTTP request can be made using Python’s standard url1ib2 module, with this Python code:

#!/usr/bin/env python
import urllib2

import urllib

import json

import pprint

Make the HTTP request.

response = urllib2.urlopen('http://demo.ckan.org/api/3/action/group_list',
data_string)

assert response.code == 200

Use the json module to load CKAN's response into a dictionary.
response_dict = json.loads(response.read())

Check the contents of the response.
assert response_dict['success'] is True
result = response_dict['result']
pprint.pprint(result)

4.3 Example: Importing datasets with the CKAN API

You can add datasets using CKAN’s web interface, but when importing many datasets it’s usually more efficient to
automate the process in some way. In this example, we’ll show you how to use the CKAN API to write a Python script
to import datasets into CKAN.

Todo: Make this script more interesting (eg. read data from a CSV file), and all put the script in a .py file somewhere
with tests and import it here.

#!/usr/bin/env python
import urllib2

import urllib

import json

import pprint

Put the details of the dataset we're going to create into a dict.
dataset_dict = {

'name': 'my_dataset_name',
'notes': 'A long description of my dataset',
'owner_org': 'org_id_or_name'

}

Use the json module to dump the dictionary to a string for posting.
data_string = urllib.quote(json.dumps(dataset_dict))

We'll use the package_create function to create a new dataset.
request = urllib2.Request(

'http://www.my_ckan_site.com/api/action/package_create')

(continues on next page)

186 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

(continued from previous page)

Creating a dataset requires an authorization header.

Replace *** with your API key, from your user account on the CKAN site
that you're creating the dataset on.
request.add_header('Authorization', '#***")

Make the HTTP request.
response = urllib2.urlopen(request, data_string)
assert response.code == 200

Use the json module to load CKAN's response into a dictionary.
response_dict = json.loads(response.read())
assert response_dict['success'] is True

package_create returns the created package as its result.
created_package = response_dict['result']
pprint.pprint(created_package)

For more examples, see AP/ Examples.

4.4 API versions

The CKAN APIs are versioned. If you make a request to an API URL without a version number, CKAN will choose
the latest version of the API:

[http ://demo.ckan.org/api/action/package_list J

Alternatively, you can specify the desired API version number in the URL that you request:

[http ://demo.ckan.org/api/3/action/package_list

Version 3 is currently the only version of the Action APIL

‘We recommend that you specify the API version number in your requests, because this ensures that your API client will
work across different sites running different version of CKAN (and will keep working on the same sites, when those
sites upgrade to new versions of CKAN). Because the latest version of the API may change when a site is upgraded
to a new version of CKAN, or may differ on different sites running different versions of CKAN, the result of an API
request that doesn’t specify the API version number cannot be relied on.

4.5 Authentication and API tokens

Warning: Starting from CKAN 2.9, API tokens are the preferred way of authenticating API calls. The old legacy
API keys will still work but they will be removed in future versions so it is recommended to switch to use API
tokens. Read below for more details.

Some API functions require authorization. The API uses the same authorization functions and configuration as the
web interface, so if a user is authorized to do something in the web interface they’ll be authorized to do it via the API
as well.

4.4. API versions 187

CKAN documentation, Release 2.11.0a0

When calling an API function that requires authorization, you must authenticate yourself by providing an authentication
key with your HTTP request. Starting from CKAN 2.9 the recommended mechanism to use are API tokens. These
are encrypted keys that can be generated manually from the UI (User Profile > Manage > API tokens) or via the
api_token_create() function. A user can create as many tokens as needed for different uses, and revoke one or
multiple tokens at any time. In addition, enabling the expire_api_token core plugin allows to define the expiration
timestamp for a token.

Site maintainers can use API Token Settings to configure the token generation.

Legacy API keys (UUIDs that look like ec5c0860-9e48-41f3-8850-4a7128b18df8) are still supported, but its use is
discouraged as they are not as secure as tokens and are limited to one per user. Support for legacy API keys will be
removed in future CKAN versions.

To provide your API token in an HTTP request, include it in an Authorization header. (The name of the HTTP
header can be configured with the :ref:apitoken_header_name option in your CKAN configuration file.)

For example, to ask whether or not you’re currently following the user markw on demo.ckan.org using curl, run this
command:

curl -H "Authorization: XXX" https://demo.ckan.org/api/3/action/am_following_user?
—id=markw

(Replacing XXX with your API token.)

Or, to get the list of activities from your user dashboard on demo.ckan.org, run this Python code:

request = urllib2.Request('https://demo.ckan.org/api/3/action/dashboard_activity_list"')
request.add_header('Authorization', 'XXX')
response_dict = json.loads(urllib2.urlopen(request, '{}').read())

4.6 GET-able API functions

Functions defined in ckan.logic.action.get can also be called with an HTTP GET request. For example, to get the list
of datasets (packages) from demo.ckan.org, open this URL in your browser:

http://demo.ckan.org/api/3/action/package_list

Or, to search for datasets (packages) matching the search query spending, on demo.ckan.org, open this URL in your
browser:

http://demo.ckan.org/api/3/action/package_search?q=spending

Tip: Browser plugins like JSONView for Firefox or Chrome will format and color CKAN’s JSON response nicely in
your browser.

The search query is given as a URL parameter ?q=spending. Multiple URL parameters can be appended, separated
by & characters, for example to get only the first 10 matching datasets open this URL:

http://demo.ckan.org/api/3/action/package_search?q=spending&rows=10

When an action requires a list of strings as the value of a parameter, the value can be sent by giving the parameter
multiple times in the URL:

http://demo.ckan.org/api/3/action/term_translation_show?terms=russian&terms=romantic%20novel

188 Chapter 4. API guide

http://demo.ckan.org/api/3/action/package_list
http://demo.ckan.org/api/3/action/package_search?q=spending
https://addons.mozilla.org/en-us/firefox/addon/jsonview/
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc
http://demo.ckan.org/api/3/action/package_search?q=spending&rows=10
http://demo.ckan.org/api/3/action/term_translation_show?terms=russian&terms=romantic%20novel

CKAN documentation, Release 2.11.0a0

4.7 JSONP support

To cater for scripts from other sites that wish to access the API, the data can be returned in JSONP format, where the
JSON data is ‘padded’ with a function call. The function is named in the ‘callback’ parameter. For example:

http://demo.ckan.org/api/3/action/package_show?id=adur_district_spending&callback=myfunction

Note: This only works for GET requests

4.8 APl Examples

4.8.1 Tags (not in a vocabulary)

A list of all tags:
* browser: http://demo.ckan.org/api/3/action/tag_list
e curl: curl http://demo.ckan.org/api/3/action/tag_list
 ckanapi: ckanapi -r http://demo.ckan.org action tag_list
Top 10 tags used by datasets:

* browser: http://demo.ckan.org/api/action/package_search?facet.field={[} %22tags%?22{]}&facet.limit=10&
rows=0

e curl: curl 'http://demo.ckan.org/api/action/package_search?facet.field=\["tags"\
J&facet.limit=10&rows=0"

e ckanapi: ckanapi -r http://demo.ckan.org action package_search facet.field='["tags"]'
facet.limit=10 rows=0

All datasets that have tag ‘economy’:
* browser: http://demo.ckan.org/api/3/action/package_search?fq=tags:economy
e curl: curl 'http://demo.ckan.org/api/3/action/package_search?fqg=tags:economy'’

 ckanapi: ckanapi -r http://demo.ckan.org action package_search fg='tags:economy'

4.8.2 Tag Vocabularies

Top 10 tags and vocabulary tags used by datasets:

* browser: http://demo.ckan.org/api/action/package_search?facet.field={[} %22tags%22{]}&facet.limit=10&
rows=0

e curl: curl 'http://demo.ckan.org/api/action/package_search?facet.field=\["tags"\
J&facet.limit=10&rows=0"

e ckanapi: ckanapi -r http://demo.ckan.org action package_search facet.field='["tags"]'
facet.limit=10 rows=0

e.g. Facet: vocab_Topics means there is a vocabulary called Topics, and its top tags are listed under it.
A list of datasets using tag ‘education’ from vocabulary “Topics’:

* browser: https://data.hdx.rwlabs.org/api/3/action/package_search?fq=vocab_Topics:education

4.7. JSONP support 189

http://demo.ckan.org/api/3/action/package_show?id=adur_district_spending&callback=myfunction
http://demo.ckan.org/api/3/action/tag_list
http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&rows=0
http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&rows=0
http://demo.ckan.org/api/3/action/package_search?fq=tags:economy
http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&rows=0
http://demo.ckan.org/api/action/package_search?facet.field={[}%22tags%22{]}&facet.limit=10&rows=0
https://data.hdx.rwlabs.org/api/3/action/package_search?fq=vocab_Topics:education

CKAN documentation, Release 2.11.0a0

e curl: curl 'https://data.hdx.rwlabs.org/api/3/action/package_search?
fg=vocab_Topics:education'

* ckanapi: ckanapi -r https://data.hdx.rwlabs.org action package_search
fg="vocab_Topics:education'

4.8.3 Uploading a new version of a resource file

You can use the upload parameter of the resource_patch () function to upload a new version of a resource file. This
requires a multipart/form-data request, with curl you can do this using the @file.csv:

curl -X POST -H "Content-Type: multipart/form-data" -H "Authorization: XXXX" -F "id=
—<resource_id>" -F "upload=@updated_file.csv" https://demo.ckan.org/api/3/action/
—,resource_patch

4.9 Action API reference

Note: If you call one of the action functions listed below and the function raises an exception, the API will return a
JSON dictionary with keys "success": false and an "error" key indicating the exception that was raised.

For example member_1ist () (which returns a list of the members of a group) raises NotFound if the group doesn’t
exist. If you called it over the API, you’d get back a JSON dict like this:

{
"success": false
"error": {
"__type": "Not Found Error",
"message": "Not found"
3
"help": "...",
3

4.9.1 ckan.logic.action.get

API functions for searching for and getting data from CKAN.

ckan.logic.action.get.package_list (context: Context, data_dict: dict[str, Any]) — List[str]

Return a list of the names of the site’s datasets (packages).
Parameters

e limit (int)—if given, the list of datasets will be broken into pages of at most 1imit datasets
per page and only one page will be returned at a time (optional)

» offset (int) — when limit is given, the offset to start returning packages from

Return type
list of strings

190 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

ckan.logic.action.get.current_package_list_with_resources(context: Context, data_dict: dict(str,
Any]) — List[dict[str, Any]]

Return a list of the site’s datasets (packages) and their resources.
The list is sorted most-recently-modified first.

Parameters
e limit (int)—if given, the list of datasets will be broken into pages of at most 1imit datasets
per page and only one page will be returned at a time (optional)

» offset (int) — when limit is given, the offset to start returning packages from
* page (int) — when limit is given, which page to return, Deprecated: use offset
Return type
list of dictionaries
ckan.logic.action.get.member_list(context: Context, data_dict: dict[str, Any]) — List[Tuple[Any, ...]]
Return the members of a group.
The user must have permission to ‘get’ the group.
Parameters
* id (string) — the id or name of the group
* object_type (string) — restrict the members returned to those of a given type, e.g.
'user' or 'package' (optional, default: None)

capacity (string) — restrict the members returned to those with a given capacity, e.g.
'member’', 'editor’', 'admin', 'public’, 'private’ (optional, default: None)

Return type
list of (id, type, capacity) tuples

Raises
ckan.logic.NotFound: if the group doesn’t exist

ckan.logic.action.get.package_collaborator_list (context: Context, data_dict: dict[str, Any]) —
List[dict[str, Any]]

Return the list of all collaborators for a given package.
Currently you must be an Admin on the package owner organization to manage collaborators.
Note: This action requires the collaborators feature to be enabled with the ckan.auth.allow_dataset_collaborators
configuration option.
Parameters
 id (string) — the id or name of the package
* capacity (string) — (optional) If provided, only users with this capacity are returned
Returns
a list of collaborators, each a dict including the package and user id, the capacity and the last
modified date
Return type
list of dictionaries

ckan.logic.action.get.package_collaborator_list_for_user (context: Context, data_dict: dict[str,
Any]) — List[dict[str, Any]]

4.9. Action API reference 191

CKAN documentation, Release 2.11.0a0

Return a list of all package the user is a collaborator in

Note: This action requires the collaborators feature to be enabled with the ckan.auth.allow_dataset_collaborators
configuration option.

Parameters
e id (string) — the id or name of the user

* capacity (string) - (optional) If provided, only packages where the user has this capacity
are returned

Returns
a list of packages, each a dict including the package id, the capacity and the last modified date

Return type
list of dictionaries

ckan.logic.action.get.group_list(context: Context, data_dict: dict[str, Any]) — List[dict[str, Any]]

Return a list of the names of the site’s groups.
Parameters

* type (string) — the type of group to list (optional, default: 'group'), See docs for
IGroupForm

* order_by (string) - the field to sort the list by, must be 'name' or 'packages' (optional,
default: 'name') Deprecated use sort.

* sort (string) — sorting of the search results. Optional. Default: “title asc” string of field
name and sort-order. The allowed fields are ‘name’, ‘package_count’ and ‘title’

e limit (int) - the maximum number of groups returned (optional) De-
fault: 1000 when all_fields=false unless set in site’s configuration ckan.
group_and_organization_list_max Default: 25 when all_fields=true unless set
in site’s configuration ckan.group_and_organization_list_all_fields_max

» offset (int) — when limit is given, the offset to start returning groups from

» groups (list of strings)— alist of names of the groups to return, if given only groups
whose names are in this list will be returned (optional)

e all_fields (bool) — return group dictionaries instead of just names. Only core fields are
returned - get some more using the include_* options. Returning a list of packages is too
expensive, so the packages property for each group is deprecated, but there is a count of the
packages in the package_count property. (optional, default: False)

* include_dataset_count (bool) - if all_fields, include the full package_count (optional,
default: True)

e include_extras (bool) — if all_fields, include the group extra fields (optional, default:
False)

* include_tags (bool) — if all_fields, include the group tags (optional, default: False)

* include_groups (bool) - if all_fields, include the groups the groups are in (optional, de-
fault: False).

* include_users (bool) — if all_fields, include the group users (optional, default: False).

Return type
list of strings

192 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

ckan.logic.action.get.organization_list (context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return a list of the names of the site’s organizations.
Parameters

* type (string) — the type of organization to list (optional, default: 'organization'), See
docs for IGroupForm

» order_by (string) — the field to sort the list by, must be 'name' or 'packages' (optional,
default: 'name') Deprecated use sort.

* sort (string) — sorting of the search results. Optional. Default: “title asc” string of field
name and sort-order. The allowed fields are ‘name’, ‘package_count’ and ‘title’

e limit (int) — the maximum number of organizations returned (optional) De-
fault: 1000 when all_fields=false unless set in site’s configuration ckan.
group_and_organization_list_max Default: 25 when all_fields=true unless set
in site’s configuration ckan.group_and_organization_list_all_fields_max

» offset (int) — when limit is given, the offset to start returning organizations from

» organizations (list of strings) — a list of names of the groups to return, if given
only groups whose names are in this list will be returned (optional)

e all_fields (bool) — return group dictionaries instead of just names. Only core fields are
returned - get some more using the include_* options. Returning a list of packages is too
expensive, so the packages property for each group is deprecated, but there is a count of the
packages in the package_count property. (optional, default: False)

e include_dataset_count (bool) — if all_fields, include the full package_count (optional,
default: True)

* include_extras (bool) — if all_fields, include the organization extra fields (optional, de-
fault: False)

* include_tags (bool) — if all_fields, include the organization tags (optional, default:
False)

* include_groups (bool) — if all_fields, include the organizations the organizations are in
(optional, default: False)

* include_users (bool) — if all_fields, include the organization users (optional, default:
False).

Return type
list of strings

ckan.logic.action.get.group_list_authz(context: Context, data_dict: dict[str, Any]) — List[dict[str, Any]]
Return the list of groups that the user is authorized to edit.

Parameters

e available_only (bool) — remove the existing groups in the package (optional, default:
False)

e am_member (bool) — if True return only the groups the logged-in user is a member of,
otherwise return all groups that the user is authorized to edit (for example, sysadmin users
are authorized to edit all groups) (optional, default: False)

Returns
list of dictized groups that the user is authorized to edit

4.9. Action API reference 193

CKAN documentation, Release 2.11.0a0

Return type
list of dicts

ckan.logic.action.get.organization_list_for_user(context: Context, data_dict: dict[str, Any]) —
List[dict[str, Any]]

Return the organizations that the user has a given permission for.

Specifically it returns the list of organizations that the currently authorized user has a given permission (for
example: “manage_group”) against.

By default this returns the list of organizations that the currently authorized user is member of, in any capacity.

When a user becomes a member of an organization in CKAN they’re given a “capacity” (sometimes called a

CLINNT3

“role”), for example “member”, “editor” or “admin”.

Each of these roles has certain permissions associated with it. For example the admin role has the “admin”
permission (which means they have permission to do anything). The editor role has permissions like “cre-

LEINT3

ate_dataset”, “update_dataset” and “delete_dataset”. The member role has the “read” permission.

This function returns the list of organizations that the authorized user has a given permission for. For example
the list of organizations that the user is an admin of, or the list of organizations that the user can create datasets
in. This takes account of when permissions cascade down an organization hierarchy.

Parameters

e id (string) — the name or id of the user to get the organization list for (optional, defaults to
the currently authorized user (logged in or via API key))

* permission (string) — the permission the user has against the returned organizations, for
example "read" or "create_dataset" (optional, default: "manage_group")

e include_dataset_count (bool) — include the package_count in each org (optional, de-
fault: False)

Returns
list of organizations that the user has the given permission for

Return type
list of dicts

ckan.logic.action.get.license_list (context: Context, data_dict: dict[str, Any]) — List[dict[str, Any]]

Return the list of licenses available for datasets on the site.

Return type
list of dictionaries

ckan.logic.action.get.tag_list(context: Context, data_dict: dict[str, Any]) — List[dict[str, Any]] | List[str]

Return a list of the site’s tags.

By default only free tags (tags that don’t belong to a vocabulary) are returned. If the vocabulary_id argument
is given then only tags belonging to that vocabulary will be returned instead.

Parameters

* query (string) — a tag name query to search for, if given only tags whose names contain
this string will be returned (optional)

* vocabulary_id (string) - the id or name of a vocabulary, if give only tags that belong to
this vocabulary will be returned (optional)

* all_fields (bool) — return full tag dictionaries instead of just names (optional, default:
False)

194 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

Return type
list of dictionaries

ckan.logic.action.get.user_list(context: Context, data_dict: DataDict) — ActionResult.UserList

Return a list of the site’s user accounts.
Parameters
* g (string) — filter the users returned to those whose names contain a string (optional)

» email (string) - filter the users returned to those whose email match a string (optional)
(you must be a sysadmin to use this filter)

* order_by (string) — which field to sort the list by (optional, default: 'display_name").
Users can be sorted by 'id', 'name', 'fullname', 'display_name', 'created',
"about', 'sysadmin' or 'number_created_packages'.

e all_fields (bool) - return full user dictionaries instead of just names. (optional, default:
True)

* include_site_user (bool) — add site_user to the result (optional, default: False)

Return type
list of user dictionaries. User properties include: number_created_packages which excludes
datasets which are private or draft state.

ckan.logic.action.get.package_relationships_list(context: Context, data_dict: dict[str, Any]) —
List[dict[str, Any]]

Return a dataset (package)’s relationships.
Parameters
 id (string) — the id or name of the first package
* i1d2 (string) — the id or name of the second package

» rel — relationship as string see package_relationship_create() for the relationship
types (optional)

Return type
list of dictionaries

ckan.logic.action.get.package_show(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Return the metadata of a dataset (package) and its resources.
Parameters
e id (string) — the id or name of the dataset

» use_default_schema (bool) — use default package schema instead of a custom schema
defined with an IDatasetForm plugin (default: False)

e include_plugin_data - Include the internal plugin data object (sysadmin only, optional,
default:False)

Type

include_plugin_data: bool

Return type
dictionary

ckan.logic.action.get.resource_show(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Return the metadata of a resource.

4.9. Action API reference 195

CKAN documentation, Release 2.11.0a0

Parameters
id (string) — the id of the resource

Return type
dictionary

ckan.logic.action.get.resource_view_show(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Return the metadata of a resource_view.

Parameters
id (string) — the id of the resource_view

Return type
dictionary

ckan.logic.action.get.resource_view_list(context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return the list of resource views for a particular resource.

Parameters
id (string) — the id of the resource

Return type
list of dictionaries.

ckan.logic.action.get.group_show(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Return the details of a group.
Parameters
e id (string) — the id or name of the group

* include_datasets (bool) — include a truncated list of the group’s datasets (optional, de-
fault: False)

* include_dataset_count (bool) — include the full package_count (optional, default:
True)

* include_extras (bool) — include the group’s extra fields (optional, default: True)

* include_users (bool) —include the group’s users (optional, default: True if ckan.auth.
public_user_details is True otherwise False)

* include_groups (bool) — include the group’s sub groups (optional, default: True)
* include_tags (bool) — include the group’s tags (optional, default: True)

* include_followers (bool) — include the group’s number of followers (optional, default:
True)

Return type
dictionary

Note: Only its first 1000 datasets are returned

ckan.logic.action.get.organization_show(context: Context, data_dict: dict{str, Any]) — dict[str, Any]

Return the details of a organization.
Parameters

* id (string) — the id or name of the organization

196 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

» include_datasets (bool) —include a truncated list of the org’s datasets (optional, default:
False)

* include_dataset_count (bool) — include the full package_count (optional, default:
True)

* include_extras (bool) — include the organization’s extra fields (optional, default: True)

* include_users (bool) —include the organization’s users (optional, default: True if ckan.
auth.public_user_details is True otherwise False)

* include_groups (bool) — include the organization’s sub groups (optional, default: True)
* include_tags (bool) — include the organization’s tags (optional, default: True)

e include_followers (bool) — include the organization’s number of followers (optional,
default: True)

Return type
dictionary

Note: Only its first 10 datasets are returned

ckan.logic.action.get.group_package_show(context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return the datasets (packages) of a group.
Parameters
e id (string) — the id or name of the group
e limit (int) — the maximum number of datasets to return (optional)

Return type
list of dictionaries

ckan.logic.action.get.tag_show(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Return the details of a tag and all its datasets.
Parameters
* id (string) — the name or id of the tag

* vocabulary_id (string) — the id or name of the tag vocabulary that the tag is in - if it is
not specified it will assume it is a free tag. (optional)

* include_datasets (bool) —include a list of the tag’s datasets. (Up to a limit of 1000 - for
more flexibility, use package_search - see package_search() for an example.) (optional,
default: False)

Returns
the details of the tag, including a list of all of the tag’s datasets and their details

Return type
dictionary

ckan.logic.action.get.user_show(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Return a user account.
Either the id should be passed or the user should be logged in.

Parameters

4.9. Action API reference 197

CKAN documentation, Release 2.11.0a0

 id (string) — the id or name of the user (optional)

e include_datasets (bool) — Include a list of datasets the user has created. If it is the
same user or a sysadmin requesting, it includes datasets that are draft or private. (optional,
default:False, limit:50)

* include_num_followers (bool) — Include the number of followers the user has (optional,
default:False)

* include_password_hash (bool) — Include the stored password hash (sysadmin only, op-
tional, default:False)

* include_plugin_extras (bool) — Include the internal plugin extras object (sysadmin
only, optional, default:False)

Returns
the details of the user. Includes email_hash and number_created_packages (which excludes draft
or private datasets unless it is the same user or sysadmin making the request). Excludes the
password (hash) and reset_key. If it is the same user or a sysadmin requesting, the email and
apikey are included.

Return type
dictionary

ckan.logic.action.get.package_autocomplete(context: Context, data_dict: dict(str, Any]) — List[dict[str,
Any]]

Return a list of datasets (packages) that match a string.
Datasets with names or titles that contain the query string will be returned.
Parameters
* g (string) — the string to search for
e limit (int) — the maximum number of resource formats to return (optional, default: 10)

Return type
list of dictionaries

ckan.logic.action.get.format_autocomplete (context: Context, data_dict: dict[str, Any]) — List[str]

Return a list of resource formats whose names contain a string.
Parameters
* g (string) — the string to search for
e limit (int) — the maximum number of resource formats to return (optional, default: 5)

Return type
list of strings

ckan.logic.action.get.user_autocomplete(context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return a list of user names that contain a string.
Parameters
* g (string) — the string to search for
e limit (int) — the maximum number of user names to return (optional, default: 20)

Return type
a list of user dictionaries each with keys 'name’, 'fullname', and 'id'

198 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

ckan.logic.action.get.group_autocomplete (context: Context, data_dict: dict[str, Any]) — List[dict[str,

Any]]

Return a list of group names that contain a string.

Parameters

q (string) — the string to search for

limit (int) — the maximum number of groups to return (optional, default: 20)

Return type
a list of group dictionaries each with keys 'name', 'title', and 'id'

ckan.logic.action.get.organization_autocomplete (context: Context, data_dict: dict[str, Any]) —

List[dict[str, Any]]

Return a list of organization names that contain a string.

Parameters

q (string) — the string to search for

limit (int) — the maximum number of organizations to return (optional, default: 20)

Return type
a list of organization dictionaries each with keys 'name’, "title’', and 'id'

ckan.logic.action.get.package_search(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Searches for packages satisfying a given search criteria.

This action accepts solr search query parameters (details below), and returns a dictionary of results, including
dictized datasets that match the search criteria, a search count and also facet information.

Solr Parameters:

For more in depth treatment of each paramter, please read the Solr Documentation.

This action accepts a subset of solr’s search query parameters:

Parameters

Moo o e

q (string) — the solr query. Optional. Default: "*:

fq (string) - any filter queries to apply. Note: +site_id:{ckan_site_id} is added to
this string prior to the query being executed.

fq list (list of strings) - additional filter queries to apply.

sort (string) — sorting of the search results. Optional. Default: 'score desc,
metadata_modified desc'. As per the solr documentation, this is a comma-separated
string of field names and sort-orderings.

rows (int)— the maximum number of matching rows (datasets) to return. (optional, default:
10, upper limit: 1000 unless set in site’s configuration ckan.search.rows_max)

start (int) — the offset in the complete result for where the set of returned datasets should
begin.
facet (string) — whether to enable faceted results. Default: True.

facet.mincount (int) — the minimum counts for facet fields should be included in the
results.

facet.limit (int) — the maximum number of values the facet fields return. A negative
value means unlimited. This can be set instance-wide with the search.facets.limit config
option. Default is 50.

4.9. Action API reference

199

https://lucene.apache.org/solr/guide/6_6/common-query-parameters.html

CKAN documentation, Release 2.11.0a0

» facet.field (Iist of strings) — the fields to facet upon. Default empty. If empty,
then the returned facet information is empty.

e include_drafts (bool)—if True, draft datasets will be included in the results. A user will
only be returned their own draft datasets, and a sysadmin will be returned all draft datasets.
Optional, the default is False.

e include_deleted (bool) — if True, deleted datasets will be included in the results (site
configuration “ckan.search.remove_deleted_packages” must be set to False). Optional, the
default is False.

* include_private (bool) — if True, private datasets will be included in the results. Only
private datasets from the user’s organizations will be returned and sysadmins will be returned
all private datasets. Optional, the default is False.

» use_default_schema (bool) — use default package schema instead of a custom schema
defined with an IDatasetForm plugin (default: False)

The following advanced Solr parameters are supported as well. Note that some of these are only available on
particular Solr versions. See Solr’s dismax and edismax documentation for further details on them:

qf, wt, bf, boost, tie, defType, mm
Examples:

g=flood datasets containing the word flood, floods or flooding fq=tags : economy datasets with the tag economy
facet.field=["tags"] facet.limit=10 rows=0 top 10 tags

Results:
The result of this action is a dict with the following keys:

Return type
A dictionary with the following keys

Parameters

e count (int) — the number of results found. Note, this is the total number of results found,
not the total number of results returned (which is affected by limit and row parameters used
in the input).

» results (Iist of dictized datasets.)— ordered list of datasets matching the query,
where the ordering defined by the sort parameter used in the query.

» facets (DEPRECATED dict) — DEPRECATED. Aggregated information about facet
counts.

» search_facets (nested dict of dicts.)-aggregated information about facet counts.
The outer dict is keyed by the facet field name (as used in the search query). Each entry of
the outer dict is itself a dict, with a “title” key, and an “items” key. The “items” key’s value
is a list of dicts, each with “count”, “display_name” and “name” entries. The display_name
is a form of the name that can be used in titles.

An example result:

{'count': 2,
'results': [{ <snip> }, { <snip> }],
'search_facets': {u'tags': {'items': [{'count': 1,
'display_name': u'tolstoy',
'name': u'tolstoy'},
{'count': 2,
'display_name': u'russian',
(continues on next page)

200

Chapter 4. API guide

http://wiki.apache.org/solr/DisMaxQParserPlugin
http://wiki.apache.org/solr/ExtendedDisMax

CKAN documentation, Release 2.11.0a0

(continued from previous page)

'name': u'russian'}

Limitations:
The full solr query language is not exposed, including.

fl
The parameter that controls which fields are returned in the solr query. fl can be None or a list of result
fields, such as [‘id’, ‘extras_custom_field’]. if fl = None, datasets are returned as a list of full dictionary.

ckan.logic.action.get.resource_search(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Searches for resources in public Datasets satisfying the search criteria.

It returns a dictionary with 2 fields: count and results. The count field contains the total number of Resources
found without the limit or query parameters having an effect. The results field is a list of dictized Resource
objects.

The ‘query’ parameter is a required field. It is a string of the form {field}: {term} or a list of strings, each of
the same form. Within each string, {field} is a field or extra field on the Resource domain object.

If {field} is "hash", then an attempt is made to match the {ferm} as a prefix of the Resource.hash field.
If {field} is an extra field, then an attempt is made to match against the extra fields stored against the Resource.

Note: The search is limited to search against extra fields declared in the config setting ckan.
extra_resource_fields.

Note: Due to a Resource’s extra fields being stored as a json blob, the match is made against the json string
representation. As such, false positives may occur:

If the search criteria is:

[query = "fieldl:terml" }

Then a json blob with the string representation of:

[{"fieldl": "foo", "field2": "terml"}

will match the search criteria! This is a known short-coming of this approach.

All matches are made ignoring case; and apart from the "hash" field, a term matches if it is a substring of the
field’s value.

Finally, when specifying more than one search criteria, the criteria are AND-ed together.

The order parameter is used to control the ordering of the results. Currently only ordering one field is available,
and in ascending order only.

The context may contain a flag, search_query, which if True will make this action behave as if being used by
the internal search api. ie - the results will not be dictized, and SearchErrors are thrown for bad search queries
(rather than ValidationErrors).

Parameters

* query (string or list of strings of the form {field}:{terml}) — The search criteria. See
above for description.

4.9. Action API reference 201

CKAN documentation, Release 2.11.0a0

e order_by (string) — A field on the Resource model that orders the results.
» offset (int) — Apply an offset to the query.
e limit (int) — Apply a limit to the query.

Returns
A dictionary with a count field, and a results field.

Return type
dict

ckan.logic.action.get.tag_search(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Return a list of tags whose names contain a given string.

By default only free tags (tags that don’t belong to any vocabulary) are searched. If the vocabulary_id argument
is given then only tags belonging to that vocabulary will be searched instead.

Parameters
* query (string or list of strings) - the string(s) to search for

* vocabulary_id (string) — the id or name of the tag vocabulary to search in (optional)

fields (dictionary) — deprecated
e limit (int) — the maximum number of tags to return
» offset (int) — when limit is given, the offset to start returning tags from
Returns
A dictionary with the following keys:

'count’
The number of tags in the result.

'results’
The list of tags whose names contain the given string, a list of dictionaries.

Return type
dictionary

ckan.logic.action.get.tag_autocomplete(context: Context, data_dict: dict[str, Any]) — List[str]

Return a list of tag names that contain a given string.

By default only free tags (tags that don’t belong to any vocabulary) are searched. If the vocabulary_id argument
is given then only tags belonging to that vocabulary will be searched instead.

Parameters
* query (string) — the string to search for

» vocabulary_id (string) — the id or name of the tag vocabulary to search in (optional)

fields (dictionary) — deprecated
e limit (int) — the maximum number of tags to return
» offset (int) — when limit is given, the offset to start returning tags from

Return type
list of strings

202 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

ckan.logic.action.get.task_status_show(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Return a task status.
Either the id parameter or the entity_id, task_type and key parameters must be given.
Parameters
* id (string) — the id of the task status (optional)
* entity_id (string) — the entity_id of the task status (optional)
* task_type (string) — the task_type of the task status (optional)
* key (string) — the key of the task status (optional)

Return type
dictionary

ckan.logic.action.get.term_translation_show(context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return the translations for the given term(s) and language(s).
Parameters

* terms (list of strings) — the terms to search for translations of, e.g. 'Russian’,
'romantic novel'

* lang_codes (1ist of language code strings)-the language codes of the languages
to search for translations into, e.g. 'en', 'de' (optional, default is to search for translations
into any language)

Return type
a list of term translation dictionaries each with keys 'term' (the term searched for, in the source
language), 'term_translation' (the translation of the term into the target language) and
'lang_code' (the language code of the target language)
ckan.logic.action.get.get_site_user(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Return the ckan site user
Parameters
defer_commit (bool) — by default (or if set to false) get_site_user will commit and clean
up the current transaction. If set to true, caller is responsible for commiting transaction after
get_site_user is called. Leaving open connections can cause cli commands to hang! (optional,
default: False)
ckan.logic.action.get.status_show(context: Context, data_dict: dictstr, Any]) — dict[str, Any]
Return a dictionary with information about the site’s configuration.
Return type
dictionary
ckan.logic.action.get.vocabulary_list(context: Context, data_dict: dict[str, Any]) — List[dict[str, Any]]
Return a list of all the site’s tag vocabularies.
Return type
list of dictionaries
ckan.logic.action.get.vocabulary_show(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Return a single tag vocabulary.

Parameters
id (string) — the id or name of the vocabulary

4.9. Action API reference 203

CKAN documentation, Release 2.11.0a0

Returns
the vocabulary.

Return type
dictionary

ckan.logic.action.get.user_follower_count (context: Context, data_dict: dict[str, Any]) — int

Return the number of followers of a user.

Parameters
id (string) — the id or name of the user

Return type
int

ckan.logic.action.get.dataset_follower_count (context: Context, data_dict: dict[str, Any]) — int

Return the number of followers of a dataset.

Parameters
id (string) — the id or name of the dataset

Return type
int
ckan.logic.action.get.group_follower_count (context: Context, data_dict: dict[str, Any]) — int

Return the number of followers of a group.

Parameters
id (string) — the id or name of the group

Return type
int

ckan.logic.action.get.organization_follower_count (context: Context, data_dict: dict[str, Any]) — int

Return the number of followers of an organization.

Parameters
id (string) — the id or name of the organization

Return type
int

ckan.logic.action.get.user_follower_list(context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return the list of users that are following the given user.

Parameters
id (string) — the id or name of the user

Return type
list of dictionaries

ckan.logic.action.get.dataset_follower_list(context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return the list of users that are following the given dataset.

Parameters
id (string) — the id or name of the dataset

Return type
list of dictionaries

204 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

ckan.logic.action.get.group_follower_list (context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return the list of users that are following the given group.

Parameters
id (string) — the id or name of the group

Return type
list of dictionaries
ckan.logic.action.get.organization_follower_list (context: Context, data_dict: dict[str, Any]) —
List[dict[str, Any]]
Return the list of users that are following the given organization.

Parameters
id (string) — the id or name of the organization

Return type
list of dictionaries

ckan.logic.action.get.am_following_user (context: Context, data_dict: dict[str, Any]) — bool

Return True if you’re following the given user, False if not.

Parameters
id (string) — the id or name of the user

Return type
bool

ckan.logic.action.get.am_following_dataset (context: Context, data_dict: dict[str, Any]) — bool

Return True if you're following the given dataset, False if not.

Parameters
id (string) — the id or name of the dataset

Return type
bool

ckan.logic.action.get.am_following_group (context: Context, data_dict: dict[str, Any]) — bool

Return True if you’re following the given group, False if not.

Parameters
id (string) — the id or name of the group

Return type
bool

ckan.logic.action.get.followee_count (context: Context, data_dict: dict[str, Any]) — int
Return the number of objects that are followed by the given user.
Counts all objects, of any type, that the given user is following (e.g. followed users, followed datasets, followed
groups).

Parameters
id (string) - the id of the user

Return type
int
ckan.logic.action.get.user_followee_count (context: Context, data_dict: dict[str, Any]) — int

Return the number of users that are followed by the given user.

205

4.9. Action API reference

CKAN documentation, Release 2.11.0a0

Parameters
id (string) — the id of the user

Return type
int

ckan.logic.action.get.dataset_followee_count (context: Context, data_dict: dict[str, Any]) — int

Return the number of datasets that are followed by the given user.

Parameters
id (string) — the id of the user

Return type
int

ckan.logic.action.get.group_followee_count (context: Context, data_dict: dict[str, Any]) — int

Return the number of groups that are followed by the given user.

Parameters
id (string) — the id of the user

Return type
int
ckan.logic.action.get.organization_followee_count (context: Context, data_dict: dict[str, Any]) — int

Return the number of organizations that are followed by the given user.

Parameters
id (string) — the id of the user

Return type
int

ckan.logic.action.get.followee_list (context: Context, data_dict: dict[str, Any]) — List[dict[str, Any]]

Return the list of objects that are followed by the given user.

Returns all objects, of any type, that the given user is following (e.g. followed users, followed datasets, followed

groups..).
Parameters
e id (string) — the id of the user
* g (string) —a query string to limit results by, only objects whose display name begins with
the given string (case-insensitive) wil be returned (optional)
Return type
list of dictionaries, each with keys 'type' (e.g. 'user', 'dataset' or 'group'),

'display_name' (e.g. a user’s display name, or a package’s title) and 'dict’' (e.g. a dict
representing the followed user, package or group, the same as the dict that would be returned by
user_show(), package_show() or group_show())

ckan.logic.action.get.user_followee_list(context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return the list of users that are followed by the given user.

Parameters
id (string) — the id of the user

Return type
list of dictionaries

206 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

ckan.logic.action.get.dataset_followee_list (context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return the list of datasets that are followed by the given user.

Parameters
id (string) — the id or name of the user

Return type
list of dictionaries

ckan.logic.action.get.group_followee_list(context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]

Return the list of groups that are followed by the given user.

Parameters
id (string) — the id or name of the user

Return type
list of dictionaries

ckan.logic.action.get.organization_followee_list (context: Context, data_dict: dict[str, Any]) —
List[dict[str, Any]]

Return the list of organizations that are followed by the given user.

Parameters
id (string) — the id or name of the user

Return type
list of dictionaries

ckan.logic.action.get.member_roles_list(context: Context, data_dict: dict[str, Any]) — List[dict[str,
Any]]
Return the possible roles for members of groups and organizations.
Parameters

group_type (string) —the group type, either "group" or "organization" (optional, default
"organization")

Returns
a list of dictionaries each with two keys: "text" (the display name of the role, e.g. "Admin")
and "value" (the internal name of the role, e.g. "admin")

Return type
list of dictionaries

ckan.logic.action.get.help_show(context: Context, data_dict: dict[str, Any]) — str| None

Return the help string for a particular API action.

Parameters
name (string) — Action function name (eg user_create, package_search)

Returns
The help string for the action function, or None if the function does not have a docstring.

Return type
string

Raises
ckan.logic.NotFound: if the action function doesn’t exist

4.9. Action API reference 207

CKAN documentation, Release 2.11.0a0

ckan.logic.action.get.config_option_show(context: Context, data_dict: dict[str, Any]) — Any

Show the current value of a particular configuration option.
Only returns runtime-editable config options (the ones returned by config_option_list()), which can be
updated with the config_option_update() action.

Parameters
key (string) — The configuration option key

Returns
The value of the config option from either the system_info table or ini file.

Return type
string

Raises
ckan.logic.ValidationError: if config option is not in the schema (whitelisted as editable).

ckan.logic.action.get.config_option_list (context: Context, data_dict: dict[str, Any]) — List[str]

Return a list of runtime-editable config options keys that can be
updated with config_option_update().

Returns
A list of config option keys.

Return type
list

ckan.logic.action.get.job_list(context: Context, data_dict: dict[str, Any]) — List[dict[str, Any]]
List enqueued background jobs.

Parameters
queues (1ist) — Queues to list jobs from. If not given then the jobs from all queues are listed.

Returns
The currently enqueued background jobs.

Return type
list

New in version 2.7.
ckan.logic.action.get. job_show(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Show details for a background job.

Parameters
id (string) — The ID of the background job.

Returns
Details about the background job.

Return type
dict

New in version 2.7.
ckan.logic.action.get.api_token_list(context: Context, data_dict: dict[str, Any]) — List[dict[str, Any]]

Return list of all available API Tokens for current user.

Parameters
user_id (string) — The user ID or name

208 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

Returns

collection of all API Tokens

Return type

list

New in version 2.9.

4.9.2 ckan.logic.action.create

API functions for adding data to CKAN.

ckan.logic.action.create.package_create(context: Context, data_dict: dict[str, Any]) — dict[str, Any] | str

Create a new dataset (package).

You must be authorized to create new datasets. If you specify any groups for the new dataset, you must also be
authorized to edit these groups.

Plugins may change the parameters of this function depending on the value of the type parameter, see the
IDatasetForm plugin interface.

Parameters

name (string) — the name of the new dataset, must be between 2 and 100 characters long
and contain only lowercase alphanumeric characters, - and _, e.g. 'warandpeace'

title (string) — the title of the dataset (optional, default: same as name)

private (bool) — If True creates a private dataset

author (string) — the name of the dataset’s author (optional)

author_email (string) — the email address of the dataset’s author (optional)
maintainer (string) — the name of the dataset’s maintainer (optional)
maintainer_email (string) — the email address of the dataset’s maintainer (optional)

license_id (license id string)—the id of the dataset’s license, see 1icense_list()
for available values (optional)

notes (string) — a description of the dataset (optional)
url (string) — a URL for the dataset’s source (optional)
version (string, no longer than 100 characters)— (optional)

state (string) — the current state of the dataset, e.g. 'active' or 'deleted’, only active
datasets show up in search results and other lists of datasets, this parameter will be ignored
if you are not authorized to change the state of the dataset (optional, default: 'active')

type (string) — the type of the dataset (optional), IDatasetForm plugins associate them-
selves with different dataset types and provide custom dataset handling behaviour for these

types

resources (list of resource dictionaries) — the dataset’s resources, see
resource_create () for the format of resource dictionaries (optional)

tags (1ist of tag dictionaries)— the dataset’s tags, see tag_create() for the for-
mat of tag dictionaries (optional)

extras (list of dataset extra dictionaries) - the dataset’s extras (optional), ex-
tras are arbitrary (key: value) metadata items that can be added to datasets, each extra dic-
tionary should have keys 'key' (a string), 'value' (a string)

4.9. Action API reference

209

CKAN documentation, Release 2.11.0a0

* plugin_data (dict) — private package data belonging to plugins. Only sysadmin users
may set this value. It should be a dict that can be dumped into JSON, and plugins should
namespace their data with the plugin name to avoid collisions with other plugins, eg:

{
"name": "test-dataset",
"plugin_data": {
"pluginl": {"keyl": "valuel"},
"plugin2": {"key2": "value2"}
}
}

e relationships_as_object (list of relationship dictionaries) - see
package_relationship_create() for the format of relationship dictionaries (op-
tional)

e relationships_as_subject (list of relationship dictionaries) - see

package_relationship_create() for the format of relationship dictionaries (optional)

» groups (list of dictionaries) — the groups to which the dataset belongs (optional),
each group dictionary should have one or more of the following keys which identify an ex-
isting group: 'id' (the id of the group, string), or 'name' (the name of the group, string),
to see which groups exist call group_list()

* owner_org (string) — the id of the dataset’'s owning organization, see
organization_list() or organization_list_for_user () for available values. This
parameter can be made optional if the config option ckan.auth.create_unowned_dataset is
set to True.

Returns
the newly created dataset (unless ‘return_id_only’ is set to True in the context, in which case just
the dataset id will be returned)

Return type
dictionary

ckan.logic.action.create.resource_create(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Appends a new resource to a datasets list of resources.

Parameters
» package_id (string) — id of package that the resource should be added to.
e url (string) — url of resource
» description (string) — (optional)
» format (string) — (optional)
* hash (string) — (optional)
* name (string) — (optional)
* resource_type (string) — (optional)
* mimetype (string) — (optional)
* mimetype_inner (string) — (optional)
* cache_url (string) — (optional)

* size (int) — (optional)

210 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

» created (iso date string) - (optional)

last_modified (iso date string) - (optional)
» cache_last_updated (iso date string) - (optional)
* upload (FieldStorage (optional) needs multipart/form-data) — (optional)

Returns
the newly created resource

Return type
dictionary

ckan.logic.action.create.resource_view_create(context: Context, data_dict: dict[str, Any]) — dict[str,
Any]

Creates a new resource view.
Parameters
» resource_id (string) — id of the resource
e title (string) - the title of the view
* description (string) — a description of the view (optional)
* view_type (string) — type of view
» config (JSON string)— options necessary to recreate a view state (optional)

Returns
the newly created resource view

Return type
dictionary

ckan.logic.action.create.resource_create_default_resource_views (context: Context, data_dict:
dict[str, Any]) — List[dict[str,
Any]]

Creates the default views (if necessary) on the provided resource

The function will get the plugins for the default views defined in the configuration, and if some were found the
can_view method of each one of them will be called to determine if a resource view should be created. Resource
views extensions get the resource dict and the parent dataset dict.

If the latter is not provided, package_show is called to get it.

By default only view plugins that don’t require the resource data to be in the DataStore are called.
See ckan.logic.action.create.package_create_default_resource_views. () for details on the
create_datastore_views parameter.

Parameters
e resource (dict) — full resource dict

» package (dict) — full dataset dict (optional, if not provided package_show() will be
called).

* create_datastore_views (bool)— whether to create views that rely on data being on the
DataStore (optional, defaults to False)

Returns
a list of resource views created (empty if none were created)

4.9. Action API reference 211

CKAN documentation, Release 2.11.0a0

Return type
list of dictionaries

ckan.logic.action.create.package_create_default_resource_views(context: Context, data_dict:
dict[str, Any]) — List[dict[str,
Any]]

Creates the default views on all resources of the provided dataset

By default only view plugins that don’t require the resource data to be in the DataStore are called. Passing
create_datastore_views as True will only create views that require data to be in the DataStore. The first case
happens when the function is called from package_create or package_update, the second when it’s called from
the DataPusher when data was uploaded to the DataStore.

Parameters
» package (dict) — full dataset dict (ie the one obtained calling package_show()).

» create_datastore_views (bool) — whether to create views that rely on data being on the
DataStore (optional, defaults to False)

Returns
a list of resource views created (empty if none were created)

Return type
list of dictionaries

ckan.logic.action.create.package_relationship_create(context: Context, data_dict: dict[str, Any]) —
dict[str, Any]

Create a relationship between two datasets (packages).
You must be authorized to edit both the subject and the object datasets.
Parameters
» subject (string) — the id or name of the dataset that is the subject of the relationship
» object — the id or name of the dataset that is the object of the relationship

* type (string) — the type of the relationship, one of 'depends_on', 'dependency_of’,
'derives_from', 'has_derivation', 'links_to', 'linked_from', 'child_of"' or

'parent_of'

* comment (string) — a comment about the relationship (optional)

Returns
the newly created package relationship

Return type
dictionary

ckan.logic.action.create.member_create(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Make an object (e.g. a user, dataset or group) a member of a group.
If the object is already a member of the group then the capacity of the membership will be updated.
You must be authorized to edit the group.
Parameters
e id (string) — the id or name of the group to add the object to
* object (string) — the id or name of the object to add

» object_type (string) — the type of the object being added, e.g. 'package' or 'user'

212 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

» capacity (string) — the capacity of the membership

Returns
the newly created (or updated) membership

Return type
dictionary

ckan.logic.action.create.package_collaborator_create(context: Context, data_dict: dict[str, Any]) —
dict[str, Any]

Make a user a collaborator in a dataset.
If the user is already a collaborator in the dataset then their capacity will be updated.
Currently you must be an Admin on the dataset owner organization to manage collaborators.

Note: This action requires the collaborators feature to be enabled with the ckan.auth.allow_dataset_collaborators
configuration option.

Parameters
e id (string) — the id or name of the dataset
e user_id (string) — the id or name of the user to add or edit

e capacity (string) — the capacity or role of the membership. Must be one of “editor” or
“member”. Additionally if ckan.auth.allow_admin_collaborators is set to True, “admin” is
also allowed.

Returns
the newly created (or updated) collaborator

Return type
dictionary

ckan.logic.action.create.group_create(context: Context, data_dict: dict[str, Any]) — str | dict[str, Any]

Create a new group.
You must be authorized to create groups.

Plugins may change the parameters of this function depending on the value of the type parameter, see the
IGroupForm plugin interface.

Parameters

* name (string) — the name of the group, a string between 2 and 100 characters long, con-
taining only lowercase alphanumeric characters, - and _

* id (string) — the id of the group (optional)

title (string) — the title of the group (optional)

description (string) — the description of the group (optional)

image_url (string) — the URL to an image to be displayed on the group’s page (optional)

* type (string) — the type of the group (optional, default: 'group'), IGroupForm plu-
gins associate themselves with different group types and provide custom group handling
behaviour for these types Cannot be ‘organization’

state (string) — the current state of the group, e.g. 'active' or 'deleted’, only active
groups show up in search results and other lists of groups, this parameter will be ignored if
you are not authorized to change the state of the group (optional, default: "active")

approval_status (string) — (optional)

4.9. Action API reference 213

CKAN documentation, Release 2.11.0a0

» extras (Iist of dataset extra dictionaries) — the group’s extras (optional), ex-
tras are arbitrary (key: value) metadata items that can be added to groups, each extra dictio-
nary should have keys 'key' (a string), 'value' (a string), and optionally 'deleted’

» packages (list of dictionaries) - the datasets (packages) that belong to the group, a
list of dictionaries each with keys 'name' (string, the id or name of the dataset) and optionally
"title' (string, the title of the dataset)

e groups (1ist of dictionaries)-—the groups thatbelong to the group, alist of dictionar-
ies each with key 'name"' (string, the id or name of the group) and optionally 'capacity"'
(string, the capacity in which the group is a member of the group)

» users (list of dictionaries)-— the users that belong to the group, a list of dictionaries
each with key 'name’ (string, the id or name of the user) and optionally 'capacity' (string,
the capacity in which the user is a member of the group)

Returns
the newly created group (unless ‘return_id_only’ is set to True in the context, in which case just
the group id will be returned)

Return type
dictionary

ckan.logic.action.create.organization_create(context: Context, data_dict: dict[str, Any]) — str |
dict[str, Any]

Create a new organization.
You must be authorized to create organizations.

Plugins may change the parameters of this function depending on the value of the type parameter, see the
IGroupForm plugin interface.

Parameters

* name (string) — the name of the organization, a string between 2 and 100 characters long,
containing only lowercase alphanumeric characters, - and _

* id (string) - the id of the organization (optional)

* title (string) — the title of the organization (optional)

* description (string) — the description of the organization (optional)

e image_url (string) — the URL to an image to be displayed on the organization’s page
(optional)

* state (string) — the current state of the organization, e.g. 'active' or 'deleted’, only
active organizations show up in search results and other lists of organizations, this parameter
will be ignored if you are not authorized to change the state of the organization (optional,
default: 'active')

» approval_status (string) — (optional)

» extras (list of dataset extra dictionaries) — the organization’s extras (op-
tional), extras are arbitrary (key: value) metadata items that can be added to organizations,
each extra dictionary should have keys 'key' (a string), 'value' (a string), and optionally
"deleted’

» packages (1ist of dictionaries) - the datasets (packages) that belong to the organi-
zation, a list of dictionaries each with keys 'name' (string, the id or name of the dataset) and
optionally 'title' (string, the title of the dataset)

214 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

» users(list of dictionaries)-the usersthatbelong tothe organization, alist of dictio-
naries each with key "name' (string, the id or name of the user) and optionally 'capacity"'
(string, the capacity in which the user is a member of the organization)

Returns
the newly created organization (unless ‘return_id_only’ is set to True in the context, in which
case just the organization id will be returned)

Return type
dictionary

ckan.logic.action.create.user_create(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Create a new user.
You must be authorized to create users.
Parameters

* name (string) — the name of the new user, a string between 2 and 100 characters in length,
containing only lowercase alphanumeric characters, - and _

e email (string) - the email address for the new user

» password (string) — the password of the new user, a string of at least 4 characters

* id (string) — the id of the new user (optional)

» fullname (string) — the full name of the new user (optional)

* about (string) — a description of the new user (optional)

* image_url (string) - the URL to an image to be displayed on the group’s page (optional)

» plugin_extras (dict) — private extra user data belonging to plugins. Only sysadmin users
may set this value. It should be a dict that can be dumped into JSON, and plugins should
namespace their extras with the plugin name to avoid collisions with other plugins, eg:

{
"name": "test_user",
"email": "test@example.com",
"plugin_extras": {
"my_plugin": {
"private_extra": 1
B
"another_plugin": {
"another_extra": True
}
}
}

» with_apitoken (bool) — whether to create an API token for the user. (Optional)

Returns
the newly created user

Return type
dictionary

ckan.logic.action.create.user_invite(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Invite a new user.

You must be authorized to create group members.

4.9. Action API reference 215

CKAN documentation, Release 2.11.0a0

Parameters
* email (string) - the email of the user to be invited to the group
* group_id (string) — the id or name of the group

» role (string) — role of the user in the group. One of member, editor, or admin

Returns
the newly created user

Return type
dictionary

ckan.logic.action.create.vocabulary_create (context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Create a new tag vocabulary.
You must be a sysadmin to create vocabularies.
Parameters
* name (string) — the name of the new vocabulary, e.g. 'Genre'
* tags (I1ist of tag dictionaries)— the new tags to add to the new vocabulary, for the

format of tag dictionaries see tag_create()

Returns
the newly-created vocabulary

Return type
dictionary

ckan.logic.action.create.tag_create(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Create a new vocabulary tag.
You must be a sysadmin to create vocabulary tags.

You can only use this function to create tags that belong to a vocabulary, not to create free tags. (To create a new
free tag simply add the tag to a package, e.g. using the package_update () function.)

Parameters
* name (string) — the name for the new tag, a string between 2 and 100 characters long
containing only alphanumeric characters, spaces and the characters -, _and ., e.g. 'Jazz'

* vocabulary_id (string) — the id of the vocabulary that the new tag should be added to,
e.g. the id of vocabulary 'Genre'

Returns
the newly-created tag

Return type
dictionary

ckan.logic.action.create.follow_user (context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Start following another user.

You must provide your API key in the Authorization header.

Parameters
id (string) — the id or name of the user to follow, e.g. ' joeuser'

Returns
a representation of the ‘follower’ relationship between yourself and the other user

216 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

Return type
dictionary

ckan.logic.action.create.follow_dataset (context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Start following a dataset.

You must provide your API key in the Authorization header.

Parameters
id (string) — the id or name of the dataset to follow, e.g. 'warandpeace'

Returns
a representation of the ‘follower’ relationship between yourself and the dataset

Return type
dictionary

ckan.logic.action.create.group_member_create (context: Context, data_dict: dict(str, Any]) — dict[str,
Any]

Make a user a member of a group.
You must be authorized to edit the group.
Parameters
* id (string) — the id or name of the group
* username (string) — name or id of the user to be made member of the group
* role (string) - role of the user in the group. One of member, editor, or admin

Returns
the newly created (or updated) membership

Return type
dictionary

ckan.logic.action.create.organization_member_create(context: Context, data_dict: dict[str, Any]) —
dict[str, Any]

Make a user a member of an organization.
You must be authorized to edit the organization.
Parameters
e id (string) — the id or name of the organization
* username (string) — name or id of the user to be made member of the organization
» role (string) — role of the user in the organization. One of member, editor, or admin

Returns
the newly created (or updated) membership

Return type
dictionary

ckan.logic.action.create.follow_group (context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Start following a group.
You must provide your API key in the Authorization header.

Parameters
id (string) — the id or name of the group to follow, e.g. 'roger'

4.9. Action API reference 217

CKAN documentation, Release 2.11.0a0

Returns
a representation of the ‘follower’ relationship between yourself and the group

Return type
dictionary
ckan.logic.action.create.api_token_create(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Create new API Token for current user.
Apart from the user and name field that are required by default implementation, there may be additional fields

registered by extensions.

Parameters
e user (string) — name or id of the user who owns new API Token

e name (string) — distinctive name for API Token
Returns
Returns a dict with the key “token” containing the encoded token value. Extensions can privide
additional fields via add_extra method of TApiToken

Return type
dictionary

4.9.3 ckan.logic.action.update

API functions for updating existing data in CKAN.
ckan.logic.action.update.resource_update(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Update a resource.
To update a resource you must be authorized to update the dataset that the resource belongs to.

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only

a specific attribute use resource_patch instead.

For further parameters see resource_create().

Parameters
id (string) — the id of the resource to update

Returns
the updated resource

Return type
string
ckan.logic.action.update.resource_view_update(context: Context, data_dict: dict[str, Any]) — dict[str,
Any]

Update a resource view.
To update a resource_view you must be authorized to update the resource that the resource_view belongs to.

For further parameters see resource_view_create().

Parameters
id (string) — the id of the resource_view to update

218 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

Returns
the updated resource_view

Return type
string

ckan.logic.action.update.resource_view_reorder (context: Context, data_dict: dict[str, Any]) — dict[str,
Any]

Reorder resource views.
Parameters
e id (string) — the id of the resource

» order (1ist of strings) - the list of id of the resource to update the order of the views

Returns
the updated order of the view

Return type
dictionary

ckan.logic.action.update.package_update(context: Context, data_dict: dict[str, Any]) — str | dict[str, Any]
Update a dataset (package).

You must be authorized to edit the dataset and the groups that it belongs to.

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only
a specific attribute use package_patch instead.

Itis recommended to call ckan. Iogic.action.get.package_show(), make the desired changes to the result,
and then call package_update () with it.

Plugins may change the parameters of this function depending on the value of the dataset’s type attribute, see
the IDatasetForm plugin interface.

For further parameters see package_create().

Parameters
id (string) — the name or id of the dataset to update

Returns
the updated dataset (if 'return_id_only' is False in the context, which is the default. Oth-
erwise returns just the dataset id)

Return type
dictionary

ckan.logic.action.update.package_revise(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Revise a dataset (package) selectively with match, filter and update parameters.
You must be authorized to edit the dataset and the groups that it belongs to.

Parameters

* match (dict) — a dict containing “id” or “name” values of the dataset to update, all values
provided must match the current dataset values or a ValidationError will be raised. e.g.
{"name": "my-data", "resources": {["name": "big.csv"]}} would abort if
the my-data dataset’s first resource name is not “big.csv”.

4.9. Action API reference 219

CKAN documentation, Release 2.11.0a0

e filter (comma-separated string patterns or list of string patterns) —a
list of string patterns of fields to remove from the current dataset. e.g. "-resources__1"
would remove the second resource, "+title, +resources, -*" would remove all fields
at the dataset level except title and all resources (default: [])

» update (dict) — a dict with values to update/create after filtering e.g. {"resources":
[{"description": "file here"}]} would update the description for the first resource

e include (comma-separated-string patterns or list of string patterns)-—a
list of string pattern of fields to include in response e.g. "-*" to return nothing (default: []
all fields returned)

match and update parameters may also be passed as “flattened keys”, using either the item numeric index or its
unique id (with a minimum of 5 characters), e.g. update__resource__1f9ab__description="guidebook"
would set the description of the resource with id starting with “1f9ab” to “guidebook”, and
update__resource__-1__description="guidebook" would do the same on the last resource in the
dataset.

The

extend suffix can also be used on the update parameter to add a new item to a list, e.g.

update__resources__extend=[{"name": '"new resource", "url": "https://example.com"}]
will add a new resource to the dataset with the provided name and url.

Usage examples:

Change description in dataset, checking for old description:

match={"notes": "old notes", "name": "xyz"}
update={"notes": "new notes"}

Identical to above, but using flattened keys:

match__name="xyz"
match__notes="old notes"
update__notes=""new notes"

Replace all fields at dataset level only, keep resources (note: dataset id and type fields can’t be deleted)

match={"id": "1234abc-1420-cbad-1922"}
filter=["+resources", "-*"]
update={"name": "fresh-start", "title": "Fresh Start"}

Add a new resource (__extend on flattened key):

match={"id": "abc0123-1420-cbad-1922"}
update__resources__extend=[{"name": "new resource", "url": "http://example.com"}

-1

Update a resource by its index:

match={"name": "my-data"}
update__resources__0={"name": "new name, first resource"}

Update a resource by its id (provide at least 5 characters):

match={"name": "their-data"}
update__resources__19cfad={"description": "right one for sure"}

Replace all fields of a resource:

220

Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

match={"id": "34al2bc-1420-cbad-1922"}

filter=["+resources__1492a__id", "-resources__1492a__*"]
update__resources__1492a={"name": "edits here", "url": "http://example.com"}
Returns

a dict containing ‘package’:the updated dataset with fields filtered by include parameter

Return type
dictionary

ckan.logic.action.update.package_resource_reorder (context: Context, data_dict: dict[str, Any]) —
dict[str, Any]
Reorder resources against datasets. If only partial resource ids are supplied then these are assumed to be first and

the other resources will stay in their original order

Parameters
» id (string) — the id or name of the package to update

e order (1ist)— alist of resource ids in the order needed

ckan.logic.action.update.package_relationship_update (context: Context, data_dict: dict(str, Any]) —
dict[str, Any]
Update a relationship between two datasets (packages).
The subject, object and type parameters are required to identify the relationship. Only the comment can be
updated.
You must be authorized to edit both the subject and the object datasets.

Parameters
subject (string) — the name or id of the dataset that is the subject of the relationship

object (string) — the name or id of the dataset that is the object of the relationship

* type (string) — the type of the relationship, one of 'depends_on', 'dependency_of"',
'derives_from', 'has_derivation', 'links_to', 'linked_from', 'child_of"' or

'parent_of'
» comment (string) — a comment about the relationship (optional)

Returns
the updated relationship

Return type
dictionary

ckan.logic.action.update.group_update(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Update a group.

You must be authorized to edit the group.

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only
a specific attribute use group_patch instead.

Plugins may change the parameters of this function depending on the value of the group’s type attribute, see the

IGroupForm plugin interface.

For further parameters see group_create().

4.9. Action API reference 221

CKAN documentation, Release 2.11.0a0

Parameters
id (string) — the name or id of the group to update

Returns
the updated group

Return type
dictionary

ckan.logic.action.update.organization_update (context: Context, data_dict: dict[str, Any]) — dict[str,
Any]
Update a organization.

You must be authorized to edit the organization.

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only
a specific attribute use organization_patch instead.

For further parameters see organization_create().
Parameters
* id (string) — the name or id of the organization to update
» packages - ignored. use package_owner_org_update () to change package ownership

Returns
the updated organization

Return type
dictionary
ckan.logic.action.update.user_update(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Update a user account.
Normal users can only update their own user accounts. Sysadmins can update any user account and modify

existing usernames.

Note: Update methods may delete parameters not explicitly provided in the data_dict. If you want to edit only
a specific attribute use user_patch instead.

For further parameters see user_create().

Parameters
id (string) — the name or id of the user to update

Returns
the updated user account

Return type
dictionary
ckan.logic.action.update.task_status_update(context: Context, data_dict: dict[str, Any]) — dict[str,
Any]
Update a task status.

Parameters
* id (string) — the id of the task status to update

222 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

e entity_id (string) -

* entity_type (string) -
 task_type (string) —

* key (string) —

* value - (optional)

» state — (optional)

* last_updated — (optional)
* error — (optional)

Returns
the updated task status

Return type
dictionary

ckan.logic.action.update.task_status_update_many (context: Context, data_dict: dict[str, Any]) —
dict[str, Any]

Update many task statuses at once.

Parameters
data (I1ist of dictionaries) - the task_status dictionaries to update, for the format of task
status dictionaries see task_status_update ()

Returns
the updated task statuses

Return type
list of dictionaries

ckan.logic.action.update.term_translation_update(context: Context, data_dict: dict[str, Any]) —
dict[str, Any]

Create or update a term translation.
You must be a sysadmin to create or update term translations.
Parameters

* term (string) — the term to be translated, in the original language, e.g. 'romantic
novel'

* term_translation (string) — the translation of the term, e.g. 'Liebesroman’
* lang_code (string) — the language code of the translation, e.g. 'de’

Returns
the newly created or updated term translation

Return type
dictionary

ckan.logic.action.update.term_translation_update_many (context: Context, data_dict: dict[str, Any]) —
dict[str, Any]

Create or update many term translations at once.

Parameters
data (1ist of dictionaries) - the term translation dictionaries to create or update, for the
format of term translation dictionaries see term_translation_update()

4.9. Action API reference 223

CKAN documentation, Release 2.11.0a0

Returns
a dictionary with key 'success' whose value is a string stating how many term translations

were updated

Return type
string
ckan.logic.action.update.vocabulary_update(context: Context, data_dict: dict[str, Any]) — dict[str, Any]

Update a tag vocabulary.
You must be a sysadmin to update vocabularies.

For further parameters see vocabulary_create().

Parameters
id (string) — the id of the vocabulary to update

Returns
the updated vocabulary

Return type
dictionary

ckan.logic.action.update.package_owner_org_update(context: Context, data_dict: dict[str, Any]) —
None

Update the owning organization of a dataset

Parameters
* id (string) — the name or id of the dataset to update

* organization_id (string) — the name or id of the owning organization
ckan.logic.action.update.bulk_update_private(context: Context, data_dict: dict[str, Any]) — None
Make a list of datasets private

Parameters
» datasets (1ist of strings) - list of ids of the datasets to update

* org_id (string) — id of the owning organization
ckan.logic.action.update.bulk_update_public(context: Context, data_dict: dict[str, Any]) — None
Make a list of datasets public

Parameters
» datasets (1ist of strings) - list of ids of the datasets to update

* org_id (string) — id of the owning organization
ckan.logic.action.update.bulk_update_delete(context: Context, data_dict: dict[str, Any]) — None
Make a list of datasets deleted

Parameters
» datasets (list of strings) - list of ids of the datasets to update
» org_id (string) — id of the owning organization
ckan.logic.action.update.config_option_update(context: Context, data_dict: dict[str, Any]) — dict[str,
Any]
New in version 2.4.
Allows to modify some CKAN runtime-editable config options

224 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

It takes arbitrary key, value pairs and checks the keys against the config options update schema. If some of the
provided keys are not present in the schema a ValidationError is raised. The values are then validated against
the schema, and if validation is passed, for each key, value config option:

¢ Itis stored on the system_info database table
* The Pylons config object is updated.

e The app_globals (g) object is updated (this only happens for options explicitly defined in the
app_globals module.

The following lists a key parameter, but this should be replaced by whichever config options want to be updated,

eg:
get_action('config_option_update) ({}, {

'ckan.site_title': 'My Open Data site',
b

Parameters
key (string) — a configuration option key (eg ckan.site_title). It must be present on the

update_configuration_schema

Returns
a dictionary with the options set

Return type
dictionary

Note: You can see all available runtime-editable configuration options calling the config_option_Ilist()
action

Note: Extensions can modify which configuration options are runtime-editable. For details, check Making
configuration options runtime-editable.

Warning: You should only add config options that you are comfortable they can be edited during runtime,
such as ones you’ve added in your own extension, or have reviewed the use of in core CKAN.

4.9.4 ckan.logic.action.patch

New in version 2.3. API functions for partial updates of existing data in CKAN
ckan.logic.action.patch.package_patch(context: Context, data_dict: dict[str, Any]) — str| dict[str, Any]
Patch a dataset (package).

Parameters
id (string) — the id or name of the dataset

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict.

To partially update resources or other metadata not at the top level of a package use package_revise () instead
to maintain existing nested values.

4.9. Action API reference 225

CKAN documentation, Release 2.11.0a0

You must be authorized to edit the dataset and the groups that it belongs to.

ckan.logic.action.patch.resource_patch(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Patch a resource

Parameters
id (string) - the id of the resource

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict

ckan.logic.action.patch.group_patch(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Patch a group

Parameters
id (string) — the id or name of the group

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict

ckan.logic.action.patch.organization_patch(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Patch an organization

Parameters
id (string) — the id or name of the organization

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict

ckan.logic.action.patch.user_patch(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Patch a user

Parameters
id (string) — the id or name of the user

The difference between the update and patch methods is that the patch will perform an update of the provided
parameters, while leaving all other parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the data_dict

4.9.5 ckan.logic.action.delete

API functions for deleting data from CKAN.

ckan.logic.action.delete.user_delete(context: Context, data_dict: dict[str, Any]) — None
Delete a user.

Only sysadmins can delete users.

Parameters
id (string) — the id or usernamename of the user to delete

ckan.logic.action.delete.package_delete(context: Context, data_dict: dict[str, Any]) — None
Delete a dataset (package).

This makes the dataset disappear from all web & API views, apart from the trash.

You must be authorized to delete the dataset.

226 Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

Parameters
id (string) — the id or name of the dataset to delete

ckan.logic.action.delete.dataset_purge(context: Context, data_dict: dict[str, Any]) — None
Purge a dataset.

Warning: Purging a dataset cannot be undone!

Purging a database completely removes the dataset from the CKAN database, whereas deleting a dataset simply
marks the dataset as deleted (it will no longer show up in the front-end, but is still in the db).

You must be authorized to purge the dataset.

Parameters
id (string) — the name or id of the dataset to be purged

ckan.logic.action.delete.resource_delete(context: Context, data_dict: dict[str, Any]) — None

Delete a resource from a dataset.
You must be a sysadmin or the owner of the resource to delete it.

Parameters
id (string) - the id of the resource

ckan.logic.action.delete.resource_view_delete(context: Context, data_dict: dict[str, Any]) — None

Delete a resource_view.

Parameters
id (string) — the id of the resource_view

ckan.logic.action.delete.resource_view_clear (context: Context, data_dict: dict[str, Any]) — None
Delete all resource views, or all of a particular type.

Parameters
view_types (list) — specific types to delete (optional)

ckan.logic.action.delete.package_relationship_delete(context: Context, data_dict: dict[str, Any]) —
None

Delete a dataset (package) relationship.
You must be authorised to delete dataset relationships, and to edit both the subject and the object datasets.
Parameters
* subject (string) — the id or name of the dataset that is the subject of the relationship
* object (string) — the id or name of the dataset that is the object of the relationship
* type (string) — the type of the relationship

ckan.logic.action.delete.member_delete (context: Context, data_dict: dict[str, Any]) — None
Remove an object (e.g. a user, dataset or group) from a group.

You must be authorized to edit a group to remove objects from it.
Parameters
 id (string) - the id of the group
* object (string) — the id or name of the object to be removed

* object_type (string) — the type of the object to be removed, e.g. package or user

4.9. Action API reference 227

CKAN documentation, Release 2.11.0a0

ckan.

ckan.

ckan.

ckan.

ckan.

logic.action.delete.package_collaborator_delete(context: Context, data_dict: dict[str, Any]) —
None

Remove a collaborator from a dataset.
Currently you must be an Admin on the dataset owner organization to manage collaborators.

Note: This action requires the collaborators feature to be enabled with the ckan.auth.allow_dataset_collaborators
configuration option.

Parameters
* id (string) — the id or name of the dataset
e user_id (string) — the id or name of the user to remove

logic.action.delete.group_delete(context: Context, data_dict: dict[str, Any]) — None
Delete a group.

You must be authorized to delete the group.

Parameters
id (string) — the name or id of the group

logic.action.delete.organization_delete(context: Context, data_dict: dict(str, Any]) — None
Delete an organization.

You must be authorized to delete the organization and no datasets should belong to the organization unless
‘ckan.auth.create_unowned_dataset=True’

Parameters
id (string) — the name or id of the organization

logic.action.delete.group_purge (context: Context, data_dict: dict[str, Any]) — None
Purge a group.

Warning: Purging a group cannot be undone!

Purging a group completely removes the group from the CKAN database, whereas deleting a group simply marks
the group as deleted (it will no longer show up in the frontend, but is still in the db).

Datasets in the organization will remain, just not in the purged group.
You must be authorized to purge the group.

Parameters
id (string) — the name or id of the group to be purged

logic.action.delete.organization_purge (context: Context, data_dict: dict[str, Any]) — None

Purge an organization.

Warning: Purging an organization cannot be undone!

Purging an organization completely removes the organization from the CKAN database, whereas deleting an
organization simply marks the organization as deleted (it will no longer show up in the frontend, but is still in
the db).

Datasets owned by the organization will remain, just not in an organization any more.

You must be authorized to purge the organization.

228

Chapter 4. API guide

CKAN documentation, Release 2.11.0a0

Parameters
id (string) — the name or id of the organization to be purged

ckan.logic.action.delete.task_status_delete(context: Context, data_dict: dict[str, Any]) — None
Delete a task status.

You must be a sysadmin to delete task statuses.

Parameters
id (string) — the id of the task status to delete

ckan.logic.action.delete.vocabulary_delete(context: Context, data_dict: dictstr, Any]) — None

Delete a tag vocabulary.
You must be a sysadmin to delete vocabularies.

Parameters
id (string) — the id of the vocabulary

ckan.logic.action.delete.tag_delete(context: Context, data_dict: dict[str, Any]) — None
Delete a tag.

You must be a sysadmin to delete tags.
Parameters
* id (string) — the id or name of the tag

» vocabulary_id (string) — the id or name of the vocabulary that the tag belongs to (op-
tional, default: None)

ckan.logic.action.delete.unfollow_user (context: Context, data_dict: dict[str, Any]) — None

Stop following a user.

Parameters
id (string) — the id or name of the user to stop following

ckan.logic.action.delete.unfollow_dataset (context: Context, data_dict: dict[str, Any]) — None

Stop following a dataset.

Parameters
id (string) — the id or name of the dataset to stop following

ckan.logic.action.delete.group_member_delete (context: Context, data_dict: dict[str, Any]) — None

Remove a user from a group.
You must be authorized to edit the group.
Parameters
* id (string) — the id or name of the group
e username (string)— name or id of the user to be removed

ckan.logic.action.delete.organization_member_delete (context: Context, data_dict: dict[str, Any]) —
None

Remove a user from an organization.
You must be authorized to edit the organization.
Parameters
 id (string) — the id or name of the organization

e username (string)— name or id of the user to be removed

4.9. Action API reference 229

CKAN documentation, Release 2.11.0a0

ckan.logic.action.delete.unfollow_group(context: Context, data_dict: dict[str, Any]) — None
Stop following a group.

Parameters
id (string) — the id or name of the group to stop following

ckan.logic.action.delete. job_clear(context: Context, data_dict: dict[str, Any]) — list[str]
Clear background job queues.

Does not affect jobs that are already being processed.

Parameters
queues (1ist) — The queues to clear. If not given then ALL queues are cleared.

Returns
The cleared queues.

Return type
list

New in version 2.7.
ckan.logic.action.delete. job_cancel (context: Context, data_dict: dict[str, Any]) — None
Cancel a queued background job.

Removes the job from the queue and deletes it.

Parameters
id (string) — The ID of the background job.

New in version 2.7.
ckan.logic.action.delete.api_token_revoke (context: Context, data_dict: dict[str, Any]) — None
Delete API Token.
Parameters
* token (string) — Token to remove(required if jti not specified).

* jti (string) - Id of the token to remove(overrides token if specified).

New in version 3.0.

230 Chapter 4. API guide

CHAPTER
FIVE

EXTENDING GUIDE

The following sections will teach you how to customize and extend CKAN’s features by developing your own CKAN
extensions.

See also:

Some core extensions come packaged with CKAN. Core extensions don’t need to be installed before you can use them
as they’re installed when you install CKAN, they can simply be enabled by following the setup instructions in each
extension’s documentation (some core extensions are already enabled by default). For example, the datastore extension,
multilingual extension, and stats extension are all core extensions, and the data viewer also uses core extensions to
enable data previews for different file formats.

See also:

External extensions are CKAN extensions that don’t come packaged with CKAN, but must be downloaded and in-
stalled separately. Find external extensions at https://extensions.ckan.org/. Again, follow each extension’s own docu-
mentation to install, setup, and use the extension.

5.1 Writing extensions tutorial

This tutorial will walk you through the process of creating a simple CKAN extension, and introduce the
core concepts that CKAN extension developers need to know along the way. As an example, we’ll use the
example_iauthfunctions extension that’s packaged with CKAN. This is a simple CKAN extension that customizes
some of CKAN’s authorization rules.

5.1.1 Installing CKAN

Before you can start developing a CKAN extension, you’ll need a working source install of CKAN on your system. If
you don’t have a CKAN source install already, follow the instructions in Installing CKAN from source before continuing.

Note: If you are developing extension without actual source installation of CKAN(i.e. if you have installed CKAN as
package via pip install ckan), you can install all main and dev dependencies with the following commands:

pip install -r https://raw.githubusercontent.com/ckan/ckan/ckan-2.10.4/requirements.txt
pip install -r https://raw.githubusercontent.com/ckan/ckan/ckan-2.10.4/dev-requirements.
—tXt

231

https://extensions.ckan.org/

CKAN documentation, Release 2.11.0a0

5.1.2 Creating a new extension

Extensions

A CKAN extension is a Python package that modifies or extends CKAN. Each extension contains one or more
plugins that must be added to your CKAN config file to activate the extension’s features.

You can use cookiecutter command to create an “empty” extension from a template. Or the CLI command ckan
generate extension. For whichever method you choose, the first step is to activate your CKAN virtual environment:

. /usr/lib/ckan/default/bin/activate

cookiecutter

When you run cookiecutter, your new extension’s directory will be created in the current working directory by
default (you can override this with the -o option), so change to the directory that you want your extension to be
created in. Usually you’ll want to track your extension code using a version control system such as git, so you
wouldn’t want to create your extension in the ckan source directory because that directory already contains the
CKAN ¢git repo. Let’s use the parent directory instead:

cd /usr/lib/ckan/default/src

Now run cookiecutter to create your extension:

[cookiecutter ckan/contrib/cookiecutter/ckan_extension/ J

CLI Command

Using the ckan generate extension place the extension’s directory in the ckan source code’s parent directory
(this can be changed the using the -o option). Run the command to create the extension:

[ckan generate extension]

The commands will present a few prompts. The information you give will end up in your extension’s setup.py file
(where you can edit them later if you want).

Note: The first prompt is for the name of your next extension. CKAN extension names have to begin with ckanext-.
This tutorial uses the project name ckanext-iauthfunctions.

Once the command has completed, your new CKAN extension’s project directory will have been created and will
contain a few directories and files to get you started:

ckanext-iauthfunctions/
ckanext/
__init__.py
iauthfunctions/
__init__.py
ckanext_iauthfunctions.egg-info/
setup.py

232 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

ckanext_iauthfunctions.egg_infois adirectory containing automatically generated metadata about your project.
It’s used by Python’s packaging and distribution tools. In general, you don’t need to edit or look at anything in this
directory, and you should not add it to version control.

setup.py is the setup script for your project. As you’ll see later, you use this script to install your project into a virtual
environment. It contains several settings that you’ll update as you develop your project.

ckanext/iauthfunctions is the Python package directory where we’ll add the source code files for our extension.

5.1.3 Creating a plugin class

Plugins

Each CKAN extension contains one or more plugins that provide the extension’s features.

cookiecutter should have created the following file file ckanext-iauthfunctions/ckanext/iauthfunctions/
plugin.py. Edit it to match the following:

encoding: utf-8

import ckan.plugins as plugins

class ExampleIAuthFunctionsPlugin(plugins.SingletonPlugin):
pass

Our plugin is a normal Python class, named ExampleTAuthFunctionsPlugin in this example, that inherits from
CKAN’s SingletonPlugin class.

Note: Every CKAN plugin class should inherit from SingletonPlugin.

5.1.4 Adding the plugin to setup.py

Now let’s add our class to the entry_pointsin setup.py. This identifies the plugin class to CKAN once the extension
is installed in CKAN’s virtualenv, and associates a plugin name with the class. Edit ckanext-iauthfunctions/
setup.py and add a line to the entry_points section like this:

T

entry_points=
[ckan.plugins]
example_iauthfunctions=ckanext.iauthfunctions.plugin:ExampleIAuthFunctionsPlugin

5.1. Writing extensions tutorial 233

CKAN documentation, Release 2.11.0a0

5.1.5 Installing the extension

When you install CKAN, you create a Python virtual environment in a directory on your system (/ust/lib/ckan/default
by default) and install the CKAN Python package and the other packages that CKAN depends on into this virtual
environment. Before we can use our plugin, we must install our extension into our CKAN virtual environment.

Make sure your virtualenv is activated, change to the extension’s directory, and run python setup.py develop:

. /usr/lib/ckan/default/bin/activate
cd /usr/lib/ckan/default/src/ckanext-iauthfunctions
python setup.py develop

5.1.6 Enabling the plugin

An extension’s plugins must be added to the ckan.plugins setting in your CKAN config file so that CKAN will call the
plugins’ methods. The name that you gave to your plugin class in the left-hand-side of the assignment in the setup.py
file (example_iauthfunctions in this example) is the name you’ll use for your plugin in CKAN’s config file:

[ckan.plugins = stats text_view datatables_view example_iauthfunctions

You should now be able to start CKAN in the development web server and have it start up without any problems:

$ ckan -c /etc/ckan/default/ckan.ini run
Starting server in PID 13961.
serving on 0.0.0.0:5000 view at http://127.0.0.1:5000

If your plugin is in the ckan.plugins setting and CKAN starts without crashing, then your plugin is installed and CKAN
can find it. Of course, your plugin doesn’t do anything yet.

5.1.7 Troubleshooting

PluginNotFoundException

If CKAN crashes with a PluginNotFoundException like this:

[ckan .plugins.core.PluginNotFoundException: example_iauthfunctions

then:

¢ Check that the name you’ve used for your plugin in your CKAN config file is the same as the name you’ve used
in your extension’s setup.py file

* Check that you’ve run python setup.py develop in your extension’s directory, with your CKAN virtual
environment activated. Every time you add a new plugin to your extension’s setup.py file, you need to run
python setup.py develop again before you can use the new plugin.

234 Chapter 5. Extending guide

http://www.virtualenv.org
http://127.0.0.1:5000

CKAN documentation, Release 2.11.0a0

ImportError

If you get an ImportError from CKAN relating to your plugin, it’s probably because the path to your plugin class in
your setup.py file is wrong.

5.1.8 Implementing the TAuthFunctions plugin interface

Plugin interfaces

CKAN provides a number of plugin interfaces that plugins must implement to hook into CKAN and modify or
extend it. Each plugin interface defines a number of methods that a plugin that implements the interface must
provide. CKAN will call your plugin’s implementations of these methods, to allow your plugin to do its stuff.

To modify CKAN’s authorization behavior, we’ll implement the TAuthFunctions plugin interface. This interface
defines just one method, that takes no parameters and returns a dictionary:

get_auth_functions() Return the authorization functions provided by this plu-
gin.

Action functions and authorization functions

At this point, it’s necessary to take a short diversion to explain how authorization works in CKAN.

Every action that can be carried out using the CKAN web interface or API is implemented by an action function in
one of the four files ckan/logic/action/{create,delete,get,update}.py.

For example, when creating a dataset either using the web interface or using the package_create() API
call, ckan.logic.action.create.package_create() is called. There’s also ckan.logic.action.get.
package_show(), ckan.logic.action.update.package_update(), and ckan.logic.action.delete.
package_delete().

For a full list of the action functions available in CKAN, see the Action API reference.

Each action function has a corresponding authorization function in one of the four files ckan/logic/auth/
{create,delete,get,update}.py, CKAN calls this authorization function to decide whether the user is au-
thorized to carry out the requested action. For example, when creating a new package using the web interface or
API, ckan.logic.auth.create.package_create() is called.

The TAuthFunctions plugin interface allows CKAN plugins to hook into this authorization system to add their own
authorization functions or override the default authorization functions. In this way, plugins have complete control
to customize CKAN’s auth.

Whenever a user tries to create a new group via the web interface or the API, CKAN calls the group_create()
authorization function to decide whether to allow the action. Let’s override this function and simply prevent anyone
from creating new groups(Note: this is default behavior. In order to go further, you need to change ckan.auth.
user_create_groups to True in configuration file). Edit your plugin.py file so that it looks like this:

encoding: utf-8

from __future__ import annotations

from typing import Any, Optional

from ckan.types import AuthResult, Context

(continues on next page)

5.1. Writing extensions tutorial 235

CKAN documentation, Release 2.11.0a0

(continued from previous page)

import ckan.plugins as plugins

def group_create(
context: Context,
data_dict: Optional[dict[str, Any]] = None) -> AuthResult:

return {'success': False, 'msg': 'No one is allowed to create groups'}
class ExampleIAuthFunctionsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IAuthFunctions)

def get_auth_functions(self):
return {'group_create': group_create}

Our ExampleTAuthFunctionsPlugin class now calls implements() to tell CKAN that it implements the
TAuthFunctions interface, and provides an implementation of the interface’s get_auth_functions () method that
overrides the default group_create() function with a custom one.

See also:

Starting from CKAN 2.10, you can also use the ckan.plugins.toolkit.blanket decorators to implement common
interfaces in your plugins. See the blanket method in the Plugins toolkit reference.

Our custom function simply returns {'success': False} to refuse to let anyone create a new group.

If you now restart CKAN and reload the /group page, as long as you're not a sysadmin user you should see the Add
Group button disappear. The CKAN web interface automatically hides buttons that the user is not authorized to use.
Visiting /group/new directly will redirect you to the login page. If you try to call group_create() via the API,
you’ll receive an Authorization Error from CKAN:

$ http 127.0.0.1:5000/api/3/action/group_create Authorization:*** name=my_group
HTTP/1.0 403 Forbidden

Access-Control-Allow-Headers: Authorization, Content-Type
Access-Control-Allow-Methods: POST, PUT, GET, DELETE, OPTIONS
Access-Control-Allow-Origin: *

Cache-Control: no-cache

Content-Length: 2866

Content-Type: application/json;charset=utf-8

Date: Wed, 12 Jun 2013 13:38:01 GMT

Pragma: no-cache

Server: PasteWSGIServer/0.5 Python/2.7.4

{
"error": {
"__type": "Authorization Error",
"message": "Access denied"
1
"help": "Create a new group...",
"success": false
}

If you're logged in as a sysadmin user however, you’ll still be able to create new groups. Sysadmin users can always
carry out any action, they bypass the authorization functions.

236 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

5.1.9 Using the plugins toolkit

Let’s make our custom authorization function a little smarter, and allow only users who are members of a particular
group named curators to create new groups.

First run CKAN, login and then create a new group called curators. Then edit plugin.py so that it looks like this:

Note: This version of plugin.py will crash if the user is not logged in or if the site doesn’t have a group called
curators. You’ll want to create a curators group in your CKAN before editing your plugin to look like this. See
Exception handling below.

encoding: utf-8
from __future__ import annotations

from ckan.types import (
AuthFunction, AuthResult, Context, ContextValidator, DataDict)
from typing import Optional, cast
import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit

def group_create(
context: Context, data_dict: Optional[DataDict] = None) -> AuthResult:
Get the user name of the logged-in user.
user_name: str = context['user']

Get a list of the members of the 'curators' group.
members = toolkit.get_action('member_list')(
{},

{'id': 'curators', 'object_type': 'user'})

members' is a list of (user_id, object_type, capacity) tuples, we're
only interested in the user_ids.
member_ids = [member_tuple[0] for member_tuple in members]

We have the logged-in user's user name, get their user id.
convert_user_name_or_id_to_id = cast(
ContextValidator,
toolkit.get_converter('convert_user_name_or_id_to_id'))
user_id = convert_user_name_or_id_to_id(user_name, context)

Finally, we can test whether the user is a member of the curators group.
if user_id in member_ids:

return {'success': True}
else:

return {'success': False,

msg': 'Only curators are allowed to create groups'}

class ExampleTAuthFunctionsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IAuthFunctions)

(continues on next page)

5.1. Writing extensions tutorial 237

CKAN documentation, Release 2.11.0a0

(continued from previous page)

def get_auth_functions(self) -> dict[str, AuthFunction]:
return {'group_create': group_create}

context

The context parameter of our group_create() function is a dictionary that CKAN passes to all authorization and
action functions containing some computed variables. Our function gets the name of the logged-in user from context:

‘ user_name: str = context['user'] ’

data_dict

The data_dict parameter of our group_create() function is another dictionary that CKAN passes to all autho-
rization and action functions. data_dict contains any data posted by the user to CKAN, eg. any fields they’ve
completed in a web form they’re submitting or any JSON fields they’ve posted to the API. If we inspect the contents
of the data_dict passed to our group_create() authorization function, we’ll see that it contains the details of the
group the user wants to create:

{'description': u'A really cool group',
'image_url': u'',
'name': u'my_group',
'title': u'My Group',
'type': 'group',
'users': [{'capacity': 'admin', 'name': u'seanh'}]}

The plugins toolkit

CKAN’s plugins toolkit is a Python module containing core CKAN functions, classes and exceptions for use by CKAN
extensions.

The toolkit’s get_action() function returns a CKAN action function. The action functions available to extensions
are the same functions that CKAN uses internally to carry out actions when users make requests to the web interface
or APL Our code uses get_action() to get the member_Ilist () action function, which it uses to get a list of the
members of the curators group:

members = toolkit.get_action('member_list')(

i},

{'id': 'curators', 'object_type': 'user'})

Calling member_11ist () in this way is equivalent to posting the same data dict to the /api/3/action/member_list
API endpoint. For other action functions available from get_action(), see Action API reference.

The toolkit’s get_validator () function returns validator and converter functions from ckan. Iogic.converters
for plugins to use. This is the same set of converter functions that CKAN’s action functions use to convert user-provided
data. Our code uses get_validator() to get the convert_user_name_or_id_to_id() converter function, which
it uses to convert the name of the logged-in user to their user id:

238 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

convert_user_name_or_id_to_id = cast(
ContextValidator,
toolkit.get_converter('convert_user_name_or_id_to_id"))
user_id = convert_user_name_or_id_to_id(user_name, context)

Finally, we can test whether the logged-in user is a member of the curators group, and allow or refuse the action:

if user_id in member_ids:
return {'success': True}
else:
return {'success': False,
'msg': 'Only curators are allowed to create groups'}

5.1.10 Exception handling

There are two bugs in our plugin.py file that need to be fixed using exception handling. First, the class will crash if
the site does not have a group named curators.

Tip: If you’ve already created a curators group and want to test what happens when the site has no curators group,
you can use CKAN’s command line interface to clean and reinitialize your database.

Try visiting the /group page in CKAN with our example_iauthfunctions plugin activated in your CKAN config
file and with no curators group in your site. If you have debug = false in your CKAN config file, you’ll see
something like this in your browser:

Error 500

Server Error

An internal server error occurred

If you have debug = true in your CKAN config file, then you’ll see a traceback page with details about the crash.
You’ll also get a 500 Server Error if you try to create a group using the group_create API action.

To handle the situation where the site has no curators group without crashing, we’ll have to handle the exception that
CKAN’s member_1ist () function raises when it’s asked to list the members of a group that doesn’t exist. Replace the
member_list line in your plugin.py file with these lines:

try:
members = toolkit.get_action('member_list')(
{},
{'id': 'curators', 'object_type': 'user'})

except toolkit.ObjectNotFound:
The curators group doesn't exist.
return {'success': False,
'msg': "The curators groups doesn't exist, so only sysadmins
"are authorized to create groups."}

5.1. Writing extensions tutorial 239

CKAN documentation, Release 2.11.0a0

With these try and except clauses added, we should be able to load the /group page and add groups, even if there
isn’t already a group called curators.

Second, plugin.py will crash if a user who is not logged-in tries to create a group. If you logout of CKAN, and then
visit /group/new you’ll see another 500 Server Error. You’ll also get this error if you post to the group_create ()
API action without providing an API key.

When the user isn’t logged in, context['user'] contains the user’s IP address instead of a user name:

{'model’': <module 'ckan.model' from ...>,
'user': u'127.0.0.1'}

When we pass this IP address as the user name to convert_user_name_or_id_to_id(), the converter function will
raise an exception because no user with that user name exists. We need to handle that exception as well, replace the
convert_user_name_or_id_to_id line in your plugin.py file with these lines:

convert_user_name_or_id_to_id = cast(

ContextValidator,

toolkit.get_converter('convert_user_name_or_id_to_id'))
try:

user_id = convert_user_name_or_id_to_id(user_name, context)
except toolkit.Invalid:

The user doesn't exist (e.g. they're not logged-in).

return {'success': False,

! 'You must be logged-in as a member of the curators
'group to create new groups.'}

msg':

5.1.11 We’re done!

Here’s our final, working plugin. py module in full:

encoding: utf-8

from ckan.types import AuthResult, Context, ContextValidator, DataDict
from typing import Optional, cast

import ckan.plugins as plugins

import ckan.plugins.toolkit as toolkit

def group_create(
context: Context, data_dict: Optional[DataDict] = None) -> AuthResult:
Get the user name of the logged-in user.
user_name = context['user']

Get a list of the members of the 'curators' group.

try:
members = toolkit.get_action('member_list')(
{1,
{'id': 'curators', 'object_type': 'user'})

except toolkit.ObjectNotFound:
The curators group doesn't exist.
return {'success': False,

(continues on next page)

240 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

(continued from previous page)
"The curators groups doesn't exist, so only sysadmins "
"are authorized to create groups."}

msg':

members' is a list of (user_id, object_type, capacity) tuples, we're
only interested in the user_ids.
member_ids = [member_tuple[0] for member_tuple in members]

We have the logged-in user's user name, get their user id.
convert_user_name_or_id_to_id = cast(

ContextValidator,

toolkit.get_converter('convert_user_name_or_id_to_id'))
try:

user_id = convert_user_name_or_id_to_id(user_name, context)
except toolkit.Invalid:

The user doesn't exist (e.g. they're not logged-in).

return {'success': False,

'msg': 'You must be logged-in as a member of the curators '

'group to create new groups.'}

Finally, we can test whether the user is a member of the curators group.
if user_id in member_ids:

return {'success': True}
else:

return {'success': False,

msg': 'Only curators are allowed to create groups'}
class ExampleTAuthFunctionsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IAuthFunctions)

def get_auth_functions(self):
return {'group_create': group_create}

In working through this tutorial, you’ve covered all the key concepts needed for writing CKAN extensions, including:

* Creating an extension

* Creating a plugin within your extension

* Adding your plugin to your extension’s setup.py file, and installing your extension
* Making your plugin implement one of CKAN’s plugin interfaces

» Using the plugins toolkit

» Handling exceptions

5.1. Writing extensions tutorial 241

CKAN documentation, Release 2.11.0a0

5.1.12 Troubleshooting

AttributeError

If you get an AttributeError like this one:

AttributeError: 'ExampleIAuthFunctionsPlugin' object has no attribute 'get_auth_functions

v
—

it means that your plugin class does not implement one of the plugin interface’s methods. A plugin must implement
every method of every plugin interface that it implements.

Todo: Can you user inherit=True to avoid having to implement them all?

Other AttributeErrors can happen if your method returns the wrong type of value, check the documentation for
each plugin interface method to see what your method should return.

TypeError

If you get a TypeError like this one:

[TypeError: get_auth_functions() takes exactly 3 arguments (1 given)]

it means that one of your plugin methods has the wrong number of parameters. A plugin has to implement each method
in a plugin interface with the same parameters as in the interface.

5.2 Using custom config settings in extensions

Extensions can define their own custom config settings that users can add to their CKAN config files to configure the
behavior of the extension.

Continuing with the TAuthFunctions example from Writing extensions tutorial, let’s make an alternative ver-
sion of the extension that allows users to create new groups if a new config setting ckan.iauthfunctions.
users_can_create_groups is True:

encoding: utf-8

from typing import Optional
from ckan.types import AuthResult, Context, DataDict

import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit
from ckan.config.declaration import Declaration, Key

def group_create(
context: Context,
data_dict: Optional[DataDict] = None) -> AuthResult:

Get the value of the ckan.iauthfunctions.users_can_create_groups
setting from the CKAN config file as a string, or False if the setting

(continues on next page)

242 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

(continued from previous page)

isn't in the config file.
users_can_create_groups = toolkit.config.get(
'ckan.iauthfunctions.users_can_create_groups')

if users_can_create_groups:
return {'success': True}
else:
return {'success': False,

msg': 'Only sysadmins can create groups'}

class ExampleTAuthFunctionsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IAuthFunctions)
plugins.implements(plugins.IConfigDeclaration)

def get_auth_functions(self):
return {'group_create': group_create}

IConfigDeclaration
def declare_config_options(self, declaration: Declaration, key: Key):

declaration.declare_bool(
key.ckan.iauthfunctions.users_can_create_groups)

The group_create authorization function in this plugin uses config to read the setting from the config file, then calls
ckan.plugins.toolkit.asbool() to convert the value from a string (all config settings values are strings, when
read from the file) to a boolean.

Note: There are also asint () and aslist() functions in the plugins toolkit.

With this plugin enabled, you should find that users can create new groups if you have ckan.iauthfunctions.
users_can_create_groups = True in the [app:main] section of your CKAN config file. Otherwise, only sysad-
min users will be allowed to create groups.

Note: Names of config settings provided by extensions should include the name of the extension, to avoid conflicting
with core config settings or with config settings from other extensions. See Avoid name clashes.

Note: The users still need to be logged-in to create groups. In general creating, updating or deleting content in CKAN
requires the user to be logged-in to a registered user account, no matter what the relevant authorization function says.

5.2. Using custom config settings in extensions 243

CKAN documentation, Release 2.11.0a0

5.3 Making configuration options runtime-editable

Extensions can allow certain configuration options to be edited during runtime, as opposed to having to edit the con-
figuration file and restart the server.

Warning: Only configuration options which are not critical, sensitive or could cause the CKAN instance to break
should be made runtime-editable. You should only add config options that you are comfortable they can be edited
during runtime, such as ones you’ve added in your own extension, or have reviewed the use of in core CKAN.

Note: Only sysadmin users are allowed to modify runtime-editable configuration options.

In this tutorial we will show how to make changes to our extension to make two configuration options runtime-editable:
ckan.datasets_per_page and a custom one named ckanext.example_iconfigurer.test_conf. You can see the
changes in the example_iconfigurer extension that’s packaged with CKAN. If you haven’t done yet, you should
check the Writing extensions tutorial first.

This tutorial assumes that we have CKAN running on the paster development server at http://localhost:5000, and that
we are using the AP key of a sysadmin user.

First of all, let’s call the config_option_list() API action to see what configuration options are editable during
runtime (the | python -m json.tool bit at the end is added to format the output nicely):

curl -H "Authorization: XXX" http://localhost:5000/api/action/config_option_list |.
—python -m json.tool
{
"help": "http://localhost:5000/api/3/action/help_show?name=config_option_list",
"result": [
"ckan.site_custom_css",
"ckan.theme",
"ckan.site_title",
"ckan.site_about",
"ckan.site_url",
"ckan.site_logo",
"ckan.site_description",
"ckan.site_intro_text",
"ckan.hola"

1,

"success": true

We can see that the two options that we want to make runtime-editable are not on the list. Trying to update one of them
with the config_option_update () action would return an error.

To include them, we need to add them to the schema that CKAN will use to decide which configuration options can be
edited safely at runtime. This is done with the update_config_schema () method of the IConfigurer interface.

Let’s have a look at how our extension should look like:

encoding: utf-8

import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit
(continues on next page)

244 Chapter 5. Extending guide

../maintaining/configuration.html#ckan-configuration-file
../maintaining/configuration.html#ckan-configuration-file
http://localhost:5000

CKAN documentation, Release 2.11.0a0

(continued from previous page)

from ckan.types import Schema

class ExampleIConfigurerPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IConfigurer)
IConfigurer
def update_config_schema(self, schema: Schema):

ignore_missing = toolkit.get_validator('ignore_missing"')
unicode_safe = toolkit.get_validator('unicode_safe")
is_positive_integer = toolkit.get_validator('is_positive_integer')

schema.update ({
This is an existing CKAN core configuration option, we are just
making it available to be editable at runtime
'ckan.datasets_per_page': [ignore_missing, is_positive_integer],

This is a custom configuration option
'ckanext.example_iconfigurer.test_conf': [ignore_missing,
unicode_safe],

D)

return schema

The update_config_schema method will receive the default schema for runtime-editable configuration options used
by CKAN core. We can then add keys to it to make new options runtime-editable (or remove them if we don’t want them
to be runtime-editable). The schema is a dictionary mapping configuration option keys to lists of validator and converter
functions to be applied to those keys. To get validator functions defined in CKAN core we use the get_validator()
function.

Note: Make sure that the first validator applied to each key is the ignore_missing one, otherwise this key will need
to be always set when updating the configuration.

Restart the web server and do another request to the config_option_Ilist () API action:

curl -H "Authorization: XXX" http://localhost:5000/api/action/config_option_list |.
—python -m json.tool
{
"help": "http://localhost:5000/api/3/action/help_show?name=config_option_list",
"result": [
"ckan.datasets_per_page",
"ckanext.example_iconfigurer.test_conf",
"ckan.site_custom_css",
"ckan.theme",
"ckan.site_title",
"ckan.site_about",
"ckan.site_url",
"ckan.site_logo",

(continues on next page)

5.3. Making configuration options runtime-editable 245

CKAN documentation, Release 2.11.0a0

(continued from previous page)
"ckan.site_description",
"ckan.site_intro_text",
"ckan.hola"

1,

"success": true

Our two new configuration options are available to be edited at runtime. We can test it calling the
config_option_update () action:

curl -X POST -H "Authorization: XXX" http://localhost:5000/api/action/config_option_
—update -d "{\"ckan.datasets_per_page\": 5}" | python -m json.tool

{
"help": "http://localhost:5001/api/3/action/help_show?name=config_option_update",
"result": {
"ckan.datasets_per_page": 5
3
"success": true
}

The configuration has now been updated. If you visit the main search page at http://localhost:5000/dataset only 5
datasets should appear in the results as opposed to the usual 20.

At this point both our configuration options can be updated via the API, but we also want to make them available on
the administration interface so non-technical users don’t need to use the API to change them.

To do so, we will extend the CKAN core template as described in the Customizing CKAN’s templates documentation.

First add the update_config() method to your plugin and register the extension templates folder:

encoding: utf-8
import ckan.plugins as plugins
import ckan.plugins.toolkit as toolkit
from ckan.types import Schema
from ckan.common import CKANConfig
class ExampleIConfigurerPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IConfigurer)
IConfigurer
def update_config(self, config: CKANConfig):
Add extension templates directory
toolkit.add_template_directory(config, 'templates')
def update_config_schema(self, schema: Schema):
ignore_missing = toolkit.get_validator('ignore_missing')
unicode_safe = toolkit.get_validator('unicode_safe")

is_positive_integer = toolkit.get_validator('is_positive_integer')

(continues on next page)

246 Chapter 5. Extending guide

http://localhost:5000/dataset

CKAN documentation, Release 2.11.0a0

(continued from previous page)

schema.update ({
This is an existing CKAN core configuration option, we are just
making it available to be editable at runtime
'ckan.datasets_per_page': [ignore_missing, is_positive_integer],

This is a custom configuration option
'ckanext.example_iconfigurer.test_conf': [ignore_missing,
unicode_safe],

i)

return schema

Now create a new file config.html file under ckanext/yourextension/templates/admin/ with the following
contents:

{% ckan_extends %}
{% import 'macros/form.html' as form %}
{% block admin_form %}

{{ super() }}

<h3>Custom configuration options </h3>

{{ form.input('ckan.datasets_per_page', id='field-ckan.datasets_per_page', label=_(
- 'Datasets per page'), value=data['ckan.datasets_per_page'], error=errors['ckan.
—.datasets_per_page']) }}

{{ form.input('ckanext.example_iconfigurer.test_conf', id='field-ckanext.example_

—iconfigurer.test_conf', label=_('Test conf'), value=data['ckanext.example_iconfigurer.
—test_conf'], error=errors['ckanext.example_iconfigurer.test_conf']) }}

{% endblock %}

{% block admin_form_help %}

{{ super() 1}

<p>Datasets per page: Number of datasets displayed in dataset..
—listings (eg search page).</p>

<p>Test conf: An example configuration option, set from an extension.
—</p>

{% endblock %}

This template is extending the default core one. The first block adds two new fields for our configuration options below
the existing ones. The second adds a helper text for them on the left hand column.

Restart the server and navigate to http://localhost:5000/ckan-admin/config. You should see the newfields at the bottom

5.3. Making configuration options runtime-editable 247

http://localhost:5000/ckan-admin/config

CKAN documentation, Release 2.11.0a0

of the form:

Custom CSS:

Homepage: Search, stats, introductory are:j

Custom configuration options

Datasets per | 5
page:

Test conf:

Update Config

Updating the values on the form should update the configuration as before.

5.4 Testing extensions

CKAN extensions can have their own tests that are run using pytest in much the same way as running CKAN’s own
tests (see Testing CKAN).

Continuing with our example_iauthfunctions extension, first we need a CKAN config file to be used when running our
tests. Create the file ckanext-iauthfunctions/test.ini with the following contents:

[app:main]
use = config:../ckan/test-core.ini

The use line declares that this config file inherits the settings from the config file used to run CKAN’s own tests
(. ./ckan should be the path to your CKAN source directory, relative to your test.ini file).

The test.ini file is a CKAN config file just like your /etc/ckan/default/ckan.ini file, and it can contain any CKAN
config file settings that you want CKAN to use when running your tests, for example:

[app:main]

use = config:../ckan/test-core.ini

ckan.site_title = My Test CKAN Site

ckan.site_description = A test site for testing my CKAN extension

Next, make the directory that will contain our test modules:

{mkdir ckanext-iauthfunctions/ckanext/iauthfunctions/tests/]

248 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

Finally, create the file ckanext-iauthfunctions/ckanext/iauthfunctions/tests/test_iauthfunctions.

py with the following contents:

encoding: utf-8
"Tests for the ckanext.example_iauthfunctions extension.

"

import pytest

import ckan.logic as logic

import ckan.tests.factories as factories

import ckan.tests.helpers as helpers

from ckan.plugins.toolkit import NotAuthorized, ObjectNotFound

@pytest.mark.ckan_config('ckan.plugins',

'example_iauthfunctions_v6_parent_auth_functions')

@pytest.mark.usefixtures('clean_db', 'with_plugins')
class TestAuthV6(object):
def test_resource_delete_editor(self):
"Normally organization admins can delete resources
Our plugin prevents this by blocking delete organization.

Ensure the delete button is not displayed (as only resource delete
is checked for showing this)

"

user = factories.User()

owner_org = factories.Organization(users=[{
'name': user['id'],
'capacity': 'admin'

D

dataset = factories.Dataset(owner_org=owner_org['id'])

resource = factories.Resource(package_id=dataset['id'])

with pytest.raises(logic.NotAuthorized) as e:
logic.check_access('resource_delete', {'user': user['name']},

{'id': resource['id']l})

assert e.value.message == 'User %s not authorized to delete resource %s' % (

user['name'], resource['id'])

def test_resource_delete_sysadmin(self):
"Normally organization admins can delete resources
Our plugin prevents this by blocking delete organization.

Ensure the delete button is not displayed (as only resource delete
is checked for showing this)

"

user = factories.Sysadmin()

owner_org = factories.Organization(users=[{
'name': user['id'],
'capacity': 'admin'

(continues on next page)

5.4. Testing extensions

249

CKAN documentation, Release 2.11.0a0

(continued from previous page)

3D

dataset = factories.Dataset(owner_org=owner_org['id'])

resource = factories.Resource(package_id=dataset['id'])

assert logic.check_access('resource_delete', {'user': user['name']},
{'id"': resource['id']})

@pytest.mark.ckan_config('ckan.plugins',
'example_iauthfunctions_v5_custom_config_setting')

@pytest.mark.ckan_config('ckan.iauthfunctions.users_can_create_groups', False)

@pytest.mark.usefixtures('clean_db', 'with_plugins')

class TestAuthV5(object):

def test_sysadmin_can_create_group_when_config_is_false(self):
sysadmin = factories.Sysadmin()
context = {'ignore_auth': False, 'user': sysadmin['name']}
helpers.call_action('group_create', context, name='test-group')

def test_user_cannot_create_group_when_config_is_false(self):
user = factories.User()
context = {'ignore_auth': False, 'user': user['name']}
with pytest.raises(NotAuthorized):
helpers.call_action('group_create', context, name='test-group')

def test_visitor_cannot_create_group_when_config_is_false(self):
context = {'ignore_auth': False, 'user': None}
with pytest.raises(NotAuthorized):
helpers.call_action('group_create', context, name='test-group')

@pytest.mark.ckan_config('ckan.plugins',
'example_iauthfunctions_v5_custom_config setting')

@pytest.mark.ckan_config('ckan.iauthfunctions.users_can_create_groups', True)

@pytest.mark.usefixtures('clean_db', 'with_plugins')

class TestAuthV5WithUserCreateGroup(object):

def test_sysadmin_can_create_group_when_config_is_true(self):
sysadmin = factories.Sysadmin()
context = {'ignore_auth': False, 'user': sysadmin['name']}
helpers.call_action('group_create', context, name='test-group')

def test_user_can_create_group_when_config_is_true(self):
user = factories.User()
context = {'ignore_auth': False, 'user': user['name']}
helpers.call_action('group_create', context, name='test-group')

def test_visitor_cannot_create_group_when_config_ is_true(self):
context = {'ignore_auth': False, 'user': None}
with pytest.raises(NotAuthorized):
helpers.call_action('group_create', context, name='test-group')

(continues on next page)

250 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

(continued from previous page)

@pytest.fixture

def curators_group(Q):
"This is a helper method for test methods to call when they want
the 'curators' group to be created.

"

sysadmin = factories.Sysadmin()

Create a user who will *not* be a member of the curators group.
noncurator = factories.User()

Create a user who will be a member of the curators group.
curator = factories.User()

Create the curators group, with the 'curator' user as a member.
users = [{'mame': curator['name'], 'capacity': 'member'}]
context = {'ignore_auth': False, 'user': sysadmin['name']}
group = helpers.call_action('group_create',

context,

name="'curators',

users=users)

return (noncurator, curator, group)

@pytest.mark.ckan_config('ckan.plugins', 'example_iauthfunctions_v4')
@pytest.mark.usefixtures('clean_db', 'with_plugins')
def test_group_create_with_no_curators_group():

"Test that group_create doesn't crash when there's no curators group.

"

sysadmin = factories.Sysadmin()

Make sure there's no curators group.
assert 'curators' not in helpers.call_action('group_list', {})

Make our sysadmin user create a group. CKAN should not crash.
context = {'ignore_auth': False, 'user': sysadmin['name']}
helpers.call_action('group_create', context, name='test-group')

@pytest.mark.ckan_config('ckan.plugins', 'example_iauthfunctions_v4')
@pytest.mark.usefixtures('clean_db', 'with_plugins')
def test_group_create_with_visitor(curators_group):

"A visitor (not logged in) should not be able to create a group.

Note: this also tests that the group_create auth function doesn't
crash when the user isn't logged in.
context = {'ignore_auth': False, 'user': None}
with pytest.raises(NotAuthorized):
helpers.call_action('group_create',
context,
name="this_group_should_not_be_created')

(continues on next page)

5.4. Testing extensions 251

CKAN documentation, Release 2.11.0a0

(continued from previous page)

@pytest.mark.ckan_config('ckan.plugins', 'example_iauthfunctions_v4')
@pytest.mark.usefixtures('clean_db', 'with_plugins')
def test_group_create_with_non_curator(curators_group) :
"A user who isn't a member of the curators group should not be able
to create a group.
noncurator, _, _ = curators_group
context = {'ignore_auth': False, 'user': noncurator['name']}
with pytest.raises(NotAuthorized):
helpers.call_action('group_create',
context,
name="'this_group_should_not_be_created')

@pytest.mark.ckan_config('ckan.plugins', 'example_iauthfunctions_v4')
@pytest.mark.usefixtures('clean_db', 'with_plugins')
def test_group_create_with_curator(curators_group):
"A member of the curators group should be able to create a group.
_, curator, _ = curators_group
name = 'my-new-group'
context = {'ignore_auth': False, 'user': curator['name']}
result = helpers.call_action('group_create', context, name=name)

assert result['name'] == name

To run these extension tests, cd into the ckanext-iauthfunctions directory and run this command:

[pytest --ckan-ini=test.ini ckanext/iauthfunctions/tests]

Some notes on how these tests work:
* Pytest has lots of useful functions for testing, see the pytest documentation.

¢ We're calling ckan.tests.call_action() This is a convenience function that CKAN provides for its own
tests.

* The CKAN core Testing coding standards can usefully be applied to writing tests for plugins.
* CKAN core provides:

— ckan.tests. factories for creating test data

— ckan.tests.helpers a collection of helper functions for use in tests

— ckan.tests.pytest_ckan. fixtures for setting up the test environment

which are also useful for testing extensions.

You might also find it useful to read the Flask testing documentation (or Pylons testing documentation for plugins
using legacy pylons controllers).

Avoid importing the plugin modules directly into your test modules (e.g from example_iauthfunctions import
plugin_v5_custom_config_setting). This causes the plugin to be registered and loaded before the entire test run,

252 Chapter 5. Extending guide

https://docs.pytest.org/en/latest/
https://flask-doc.readthedocs.io/en/latest/testing.html
http://docs.pylonsproject.org/projects/pylons-webframework/en/latest/testing.html

CKAN documentation, Release 2.11.0a0

so the plugin will be loaded for all tests. This can cause conflicts and test failures.

5.4.1 Using the test client

It is possible to make requests to the CKAN application from within your tests in order to test the actual responses
returned by CKAN. To do so you need to import the app fixture:

def test_some_ckan_page(app):

pass

The app fixture extends Flask’s Test client, and can be used to perform GET and POST requests. A Werkzeug’s
TestResponse object (reference) will be returned

from ckan.plugins.toolkit import url_for
def test_dataset_new_page(app):

url = url_for('"group.index")
response = app.get(url)

assert "Search groups" in response.body

By default, requests are not authenticated. If you want to make the request impersonating a user in particular, you can
pass an API Token in the headers parameter:

from ckan.plugins.toolkit import url_for
def test_group_new_page(app) :
user = factories.UserWithToken()
url = url_for("group.new")
response = app.get(
url,
headers={"Authorization": user["token"]}
)
assert "Create a Group" in response.body
def test_submit_group_form_page(app):

user = factories.UserWithToken()

url = url_for("group.new")

data = {
"name": "test-group",
"title": "Test Group",
"description": "Some test group",
"save": ""

}

response = app.post(
url,

(continues on next page)

5.4. Testing extensions 253

https://flask.palletsprojects.com/en/2.2.x/testing/#sending-requests-with-the-test-client
https://werkzeug.palletsprojects.com/en/2.2.x/test/#werkzeug.test.TestResponse

CKAN documentation, Release 2.11.0a0

(continued from previous page)

headers={"Authorization": user["token"]},
data=data,

)

assert data["title"] in response.body
assert call_action('group_show", id=data["name"])

Todo: Link to CKAN guidelines for how to write tests, once those guidelines have been written. Also add any more
extension-specific testing details here.

5.5 Best practices for writing extensions

5.5.1 Follow CKAN’s coding standards

See Contributing guide.

5.5.2 Use the plugins toolkit instead of importing CKAN

Try to limit your extension to interacting with CKAN only through CKAN’s plugin interfaces and plugins toolkit. It’s
a good idea to keep your extension code separate from CKAN as much as possible, so that internal changes in CKAN
from one release to the next don’t break your extension.

5.5.3 Don’t edit CKAN’s database tables

An extension can create its own tables in the CKAN database, but it should nor write to core CKAN tables directly,
add columns to core tables, or use foreign keys against core tables.

5.5.4 Don’t automatically modify the database structure

If your extension uses custom database tables then it needs to modify the database structure, for example to add the tables
after its installation or to migrate them after an update. These modifications should not be performed automatically
when the extension is loaded, since this can lead to dead-locks and other problems.

5.5.5 Use migrations when introducing new models

Any new model provided by extension must use migration script for creating and updating relevant tables. As well as
core tables, extensions should provide revisioned workflow for reproducing correct state of DB. There are few conve-
nient tools available in CKAN for this purpose:

¢ New migration script can be created via CLI interface:

[Ckan generate migration -p PLUGIN_NAME -m 'MIGRATION MESSAGE'

One should take care and use actual plugin’s name, not extension name instead of PLUGIN_NAME. This may
become important when an extension provides multiple plugins, which contain migration scripts. If those scripts
should be applied independently(i.e., there is no sense in particular migrations, unless specific plugin is enabled),

254 Chapter 5. Extending guide

https://github.com/ckan/ideas-and-roadmap/issues/164

CKAN documentation, Release 2.11.0a0

-p/--plugin option gives you enough control. Otherwise, if extenson named ckanext-ext contains just single
plugin ext, command for new migration will look like ckan generate migration -p ext.

Migration scripts are created under EXTENSION_ROOT/ckanext/EXTENSION_NAME/migration/PLUGIN_NAME/versions.

Once created, migration script contains empty upgrade and downgrade function, which need to be updated
according to desired changes. More details abailable in Alembic documentation.

* Apply migration script with:

[ckan db upgrade -p PLUGIN_NAME

This command will check current state of DB and apply only required migrations, so it’s idempotent.

* Revert changes introduced by plugin’s migration scripts with:

[ckan db downgrade -p PLUGIN_NAME

5.5.6 Declare models using shared metadata

New in version 2.10.

Use the BaselModel class from the plugins toolkit to implement SQLAlchemy declarative models in your extension.
It is attached to the core metadata object, so it helps SQLAlIchemy to resolve cascade relationships and control orphan
removals. In addition, the clean_db test fixture will also handle these tables when cleaning the database.

Example:

from ckan.plugins import toolkit

class ExtModel (toolkit.BaseModel):
__tablename__ = "ext_model"
id = Column(String(50), primary_key=True)

In previous versions of CKAN, you can link to the ckan.model .meta.metadata object directly in your own class:

import ckan.model as model
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base(metadata=model.meta.metadata)
class ExtModel (Base):

__tablename__ = "ext_model"
id = Column(String(50), primary_key=True)

5.5. Best practices for writing extensions 255

https://alembic.sqlalchemy.org/en/latest/tutorial.html#create-a-migration-script

CKAN documentation, Release 2.11.0a0

5.5.7 Implement each plugin class in a separate Python module

This keeps CKAN’s plugin loading order simple, see ckan.plugins.

5.5.8 Avoid name clashes

Many of the names you pick for your identifiers and files must be unique in relation to the names used by core CKAN
and other extensions. To avoid conflicts you should prefix any public name that your extension introduces with the
name of your extension. For example:

e The names of configuration settings introduced by your extension should have the form my_extension.
my_config_setting.

* The names of templates and template snippets introduced by your extension should begin with the name of your
extension:

[snippets/my_extension_use ful_snippet.html J

If you have add a lot of templates you can also put them into a separate folder named after your extension instead.

* The names of femplate helper functions introduced by your extension should begin with the name of your exten-
sion. For example:

def get_helpers(self):
"Register the most_popular_groups() function above as a template
helper function.

"

Template helper function names should begin with the name of the
extension they belong to, to avoid clashing with functions from
other extensions.

return {'example_theme_most_popular_groups': most_popular_groups}

* The names of JavaScript modules introduced by your extension should begin with the name of your extension.
For example assets/example_theme_popover. js:

// Enable JavaScript's strict mode. Strict mode catches some common

// programming errors and throws exceptions, prevents some unsafe actions from
// being taken, and disables some confusing and bad JavaScript features.

"use strict";

ckan.module('example_theme_popover', function ($) {

return {
initialize: function () {
console.log("I've been initialized for element: ", this.el);
}
Bt
bi;

L

* The names of API action functions introduced by your extension should begin with the name of your extension.
For example my_extension_foobarize_everything.

¢ The names of background job queues introduced by your extension should begin with the name of your extension.
For example my_extension:super-special-job-queue.

256 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

In some situations, a resource may even be shared between multiple CKAN instances, which requires an even higher
degree of uniqueness for the corresponding names. In that case, you should also prefix your identifiers with the CKAN
site ID, which is available via

try:

CKAN 2.7 and later

from ckan.common import config
except ImportError:

CKAN 2.6 and earlier

from pylons import config

site_id = config[u'ckan.site_id"']

Currently this only affects the Redis database:

* All keys in the Redis database created by your extension should be prefixed with both the CKAN site ID and
your extension’s name.

5.5.9 Internationalize user-visible strings

All user-visible strings should be internationalized, see String internationalization.

5.5.10 Add third party libraries to requirements.txt

If your extension requires third party libraries, rather than adding them to setup.py, they should be added to
requirements. txt, which can be installed with:

[pip install -r requirements.txt]

To prevent accidental breakage of your extension through backwards-incompatible behaviour of newer versions of your
dependencies, their versions should be pinned, such as:

[requests::z .7.0 J

On the flip side, be mindful that this could also create version conflicts with requirements of considerably newer or
older extensions.

5.5.11 Implementing CSRF protection

CKAN 2.10 introduces CSRF protection for all the frontend forms. Extensions are currently excluded from the CSRF
protection to give time to update them, but CSRF protection will be enforced in the future.

To add CSRF protection to your extensions add the following helper call to your form templates:

<form class="dataset-form form-horizontal" method="post" enctype="multipart/form-data">
{{ h.csrf_input() }}

If your extension needs to support older CKAN versions, use the following:

<form class="dataset-form form-horizontal" method="post" enctype="multipart/form-data">
{{ h.csrf_input() if 'csrf_input' in h }}

Forms that are submitted via JavaScript modules also need to submit the CSRF token, here’s an example of how to
append it to an existing form:

5.5. Best practices for writing extensions 257

CKAN documentation, Release 2.11.0a0

// Get the csrf value from the page meta tag

var csrf_value = $('meta[name=_csrf_token]').attr('content')

// Create the hidden input

var hidden_csrf_input = $('<input name="_csrf_token" type="hidden" value="'+csrf_value+'
)

// Insert the hidden input at the beginning of the form
hidden_csrf_input.prependTo(form)

API calls performed from JavaScript modules from the UI (which use cookie-based authentication) should also include
the token, in this case in the X-CSRFToken header. CKAN Modules using the builtin client) to perform API calls will
have the header added automatically. If you are performing API calls directly from a Ul module you will need to add
the header yourself.

5.6 Customizing dataset and resource metadata fields using IDataset-
Form

Storing additional metadata for a dataset beyond the default metadata in CKAN is a common use case. CKAN provides
a simple way to do this by allowing you to store arbitrary key/value pairs against a dataset when creating or updating
the dataset. These appear under the “Additional Information” section on the web interface and in ‘extras’ field of the
JSON when accessed via the APL

Default extras can only take strings for their keys and values, no validation is applied to the inputs and you cannot make
them mandatory or restrict the possible values to a defined list. By using CKAN’s IDatasetForm plugin interface, a
CKAN plugin can add custom, first-class metadata fields to CKAN datasets, and can do custom validation of these
fields.

See also:
In this tutorial we are assuming that you have read the Writing extensions tutorial.

You may also want to check the [ckanext-scheming](https://github.com/ckan/ckanext-scheming) extension, as it will
allow metadata schema configuration using a YAML or JSON schema description, replete with custom validation and
template snippets for editing and display.

5.6.1 CKAN schemas and validation

When a dataset is created, updated or viewed, the parameters passed to CKAN (e.g. via the web form when creating or
updating a dataset, or posted to an API end point) are validated against a schema. For each parameter, the schema will
contain a corresponding list of functions that will be run against the value of the parameter. Generally these functions
are used to validate the value (and raise an error if the value fails validation) or convert the value to a different value.

For example, the schemas can allow optional values by using the ignore_missing () validator or check that a dataset
exists using package_id_exists(). A list of available validators can be found at the Validator functions reference.
You can also define your own Custom validators.

We will be customizing these schemas to add our additional fields. The IDatasetForm interface allows us to override
the schemas for creation, updating and displaying of datasets.

258 Chapter 5. Extending guide

https://docs.ckan.org/en/latest/contributing/frontend/index.html?#client
https://github.com/ckan/ckanext-scheming

CKAN documentation, Release 2.11.0a0

create_package_schema() Return the schema for validating new dataset dicts.

update_package_schema() Return the schema for validating updated dataset dicts.

show_package_schema() Return a schema to validate datasets before they're
shown to the user.

is_fallback() Return True if this plugin is the fallback plugin.

package_types() Return an iterable of dataset (package) types that this
plugin handles.

CKAN allows you to have multiple IDatasetForm plugins, each handling different dataset types. So you could customize
the CKAN web front end, for different types of datasets. In this tutorial we will be defining our plugin as the fallback
plugin. This plugin is used if no other IDatasetForm plugin is found that handles that dataset type.

The IDatasetForm also has other additional functions that allow you to provide a custom template to be rendered for
the CKAN frontend, but we will not be using them for this tutorial.

Adding custom fields to datasets

Create a new plugin named ckanext-extrafields and create a class named ExampleIDatasetFormPlugins inside
ckanext-extrafields/ckanext/extrafields/plugin.py that implements the IDatasetForm interface and in-
herits from SingletonPlugin and DefaultDatasetForm.

encoding: utf-8

from __future__ import annotations
from ckan.types import Schema
import ckan.plugins as p

import ckan.plugins.toolkit as tk

class ExampleIDatasetFormPlugin(tk.DefaultDatasetForm, p.SingletonPlugin):
p.implements(p.IDatasetForm)

Updating the CKAN schema

The create_package_schema() function is used whenever a new dataset is created, we’ll want up-
date the default schema and insert our custom field here. We will fetch the default schema defined in
default_create_package_schema() by running create_package_schema()’s super function and update it.

def create_package_schema(self) -> Schema:
let's grab the default schema in our plugin
schema: Schema = super(
ExampleIDatasetFormPlugin, self).create_package_schema()
our custom field
schema.update ({
'custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]

D

return schema

The CKAN schema is a dictionary where the key is the name of the field and the value is a list of validators and
converters. Here we have a validator to tell CKAN to not raise a validation error if the value is missing and a converter

5.6. Customizing dataset and resource metadata fields using IDatasetForm 259

CKAN documentation, Release 2.11.0a0

to convert the value to and save as an extra. We will want to change the update_package_schema () function with
the same update code.

def update_package_schema(self) -> Schema:
schema: Schema = super(
ExampleIDatasetFormPlugin, self).update_package_schema()
our custom field
schema.update ({
'custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]

D)

return schema

The show_package_schema() is used when the package_show() action is called, we want the de-
fault_show_package_schema to be updated to include our custom field. This time, instead of converting to an extras
field, we want our field to be converted from an extras field. So we want to use the convert_from_extras() converter.

def show_package_schema(self) -> Schema:
schema: Schema = super(
ExampleIDatasetFormPlugin, self).show_package_schema()
schema.update ({
'custom_text': [tk.get_converter('convert_from_extras'),
tk.get_validator('ignore_missing')]
b

return schema

Dataset types

The package_types() function defines a list of dataset types that this plugin handles. Each dataset has a field con-
taining its type. Plugins can register to handle specific types of dataset and ignore others. Since our plugin is not for
any specific type of dataset and we want our plugin to be the default handler, we update the plugin code to contain the
following:

schema: Schema = super(
ExampleIDatasetFormPlugin, self).show_package_schema()
schema.update ({
'custom_text': [tk.get_converter('convert_from_extras'),
tk.get_validator('ignore_missing')]
b

return schema

def is_fallback(self):
Return True to register this plugin as the default handler for
package types not handled by any other IDatasetForm plugin.
return True

def package_types(self) -> list[str]:
This plugin doesn't handle any special package types, it just
registers itself as the default (above).
return []

260 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

Updating templates

In order for our new field to be visible on the CKAN front-end, we need to update the templates. Add an additional
line to make the plugin implement the IConfigurer interface

class ExampleIDatasetFormPlugin(tk.DefaultDatasetForm, p.SingletonPlugin):
p.implements(p.IDatasetForm)
p.implements(p.IConfigurer)

This interface allows to implement a function update_config() that allows us to update the CKAN config, in our
case we want to add an additional location for CKAN to look for templates. Add the following code to your plugin.

def update_config(self, config: CKANConfig):
Add this plugin's templates dir to CKAN's extra_template_paths, so
that CKAN will use this plugin's custom templates.
tk.add_template_directory(config, 'templates')

You will also need to add a directory under your extension directory to store the templates. Create a directory called
ckanext-extrafields/ckanext/extrafields/templates/ and the subdirectories ckanext-extrafields/
ckanext/extrafields/templates/package/snippets/.

We need to override a few templates in order to get our custom field rendered. A common option when using a custom
schema is to remove the default custom field handling that allows arbitrary key/value pairs. Create a template file in
our templates directory called package/snippets/package_metadata_fields.html containing

{% ckan_extends %}

{# You could remove 'free extras' from the package form like this, but we keep them for.,
< this example's tests.

{% block custom_fields %}

{% endblock %}
#}

This overrides the custom_fields block with an empty block so the default CKAN custom fields form does not render.

New in version 2.3: Starting from CKAN 2.3 you can combine free extras with custom fields handled with
convert_to_extras and convert_from_extras. On prior versions you’ll always need to remove the free extras
handling.

Next add a template in our template directory called package/snippets/package_basic_fields.html containing

{% ckan_extends %}

{% block package_basic_fields_custom %}

{{ form.input('custom_text', label=_('Custom Text'), id='field-custom_text',.
—placeholder=_("'custom text'), value=data.custom_text, error=errors.custom_text,.,
—classes=["'control-medium']) }}

{% endblock %}

This adds our custom_text field to the editing form. Finally we want to display our custom_text field on the dataset
page. Add another file called package/snippets/additional_info.html containing

5.6. Customizing dataset and resource metadata fields using IDatasetForm 261

CKAN documentation, Release 2.11.0a0

{% ckan_extends %}

{% block extras %}
{% if pkg_dict.custom_text %}
<tr>
<th scope="row" class="dataset-label">{{ _("Custom Text") }}</th>
<td class="dataset-details">{{ pkg_dict.custom_text }}</td>
</tr>
{% endif %}
{% endblock %}

This template overrides the default extras rendering on the dataset page and replaces it to just display our custom field.

You’re done! Make sure you have your plugin installed and setup as in the extension/tutorial. Then run a development
server and you should now have an additional field called “Custom Text” when displaying and adding/editing a dataset.

Cleaning up the code

Before we continue further, we can clean up the create_package_schema() and update_package_schema().
There is a bit of duplication that we could remove. Replace the two functions with:

def _modify_package_schema(self, schema: Schema) -> Schema:
schema.update ({
"custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]

i)

return schema

def create_package_schema(self):
schema: Schema = super(
ExampleIDatasetFormPlugin, self).create_package_schema()
schema = self._modify_package_schema(schema)
return schema

def update_package_schema(self):
schema: Schema = super(
ExampleIDatasetFormPlugin, self).update_package_schema()
schema = self._modify_package_schema(schema)
return schema

5.6.2 Custom validators
You may define custom validators in your extensions and you can share validators between extensions by registering
them with the ITValidators interface.

Any of the following objects may be used as validators as part of a custom dataset, group or organization schema.
CKAN’s validation code will check for and attempt to use them in this order:

1. a function taking a single parameter: validator (value)

2. a function taking four parameters: validator(key, flattened_data, errors, context)

262 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

3. afunction taking two parameters validator(value, context)

Note: Object constructors(including str, int, etc.) and some built-in functions cannot be used as validators. In order to
use them, create a thin wrapper which passes values into these callables and converts expected exceptions into ckan.
plugins.toolkit.Invalid.

Example:

def int_validator(value):
try:
return int(value)
except ValueError:
raise Invalid(f"Invalid literal for integer: {value}")

validator(value)

The simplest form of validator is a callable taking a single parameter. For example:

from ckan.plugins.toolkit import Invalid

def starts_with_b(value):
if not value.startswith('b'):
raise Invalid('"Doesn't start with b")
return value

The starts_with_b validator causes a validation error for values not starting with ‘b’. On a web form this validation
error would appear next to the field to which the validator was applied.

return value must be used by validators when accepting data or the value will be converted to None. This form is
useful for converting data as well, because the return value will replace the field value passed:

def embiggen(value):
return value.upper()

The embiggen validator will convert values passed to all-uppercase.

validator(value, context)

Validators that need access to the database or information about the user may be written as a callable taking two
parameters. context['session'] is the sqlalchemy session object and context['user'] is the username of the
logged-in user:

from ckan.plugins.toolkit import Invalid

def fred_only(value, context):
if value and context['user'] != 'fred':
raise Invalid('only fred may set this value')
return value

Otherwise this is the same as the single-parameter form above.

5.6. Customizing dataset and resource metadata fields using IDatasetForm 263

CKAN documentation, Release 2.11.0a0

validator(key, flattened_data, errors, context)

Validators that need to access or update multiple fields may be written as a callable taking four parameters.

All fields and errors in a flattened form are passed to the validator. The validator must fetch values from
flattened_data and may replace values in flattened_data. The return value from this function is ignored.

key is the flattened key for the field to which this validator was applied. For example ('notes',) for the dataset notes
field or ('resources', 0, 'url') for the url of the first resource of the dataset. These flattened keys are the same
in both the flattened_data and errors dicts passed.

errors contains lists of validation errors for each field.
context is the same value passed to the two-parameter form above.

Note that this form can be tricky to use because some of the values in flattened_data will have had validators applied
but other fields won’t. You may add this type of validator to the special schema fields '__before' or '__after’ to
have them run before or after all the other validation takes place to avoid the problem of working with partially-validated
data.

The validator has to be registered. Example:

from ckan import plugins

class ExampleIValidatorsPlugin(plugins.SingletonPlugin):
plugins.implements(plugins.IValidators)

def get_validators(self) -> dict[str, Validator]:
return {
u'equals_fortytwo': equals_fortytwo,
u'negate': negate,
u'unicode_only': unicode_please,

5.6.3 Tag vocabularies

If you need to add a custom field where the input options are restricted to a provided list of options, you can use tag
vocabularies Tag Vocabularies. We will need to create our vocabulary first. By calling vocabulary_create(). Add
a function to your plugin.py above your plugin class.

def create_country_codes():
user = tk.get_action('get_site_user')({'ignore_auth': True}, {})
context: Context = {'user': user['name']}
try:
data = {'id': 'country_codes'}
tk.get_action('vocabulary_show') (context, data)
except tk.ObjectNotFound:
data = {'name': 'country_codes'}
vocab = tk.get_action('vocabulary_create') (context, data)
for tag in (u'uk', u'ie', u'de', u'fr', u'es'):
data: dict[str, Any] = {'name': tag, 'vocabulary_id': vocab['id']}
tk.get_action('tag_create') (context, data)

264 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

This code block is taken from the example_idatsetform plugin. create_country_codes tries to fetch the vo-
cabulary country_codes using vocabulary_show(). If it is not found it will create it and iterate over the list of
countries ‘uk’, ‘ie’, ‘de’, ‘fr’, ‘es’. For each of these a vocabulary tag is created using tag_create (), belonging to the
vocabulary country_code.

Although we have only defined five tags here, additional tags can be created at any point by a sysadmin user by calling
tag_create() using the API or action functions. Add a second function below create_country_codes

def country_codes():

create_country_codes()

try:
tag_list = tk.get_action('tag_list")
country_codes = tag_list({}, {'vocabulary_id': 'country_codes'})
return country_codes

except tk.ObjectNotFound:
return None

country_codes will call create_country_codes so that the country_codes vocabulary is created if it does not
exist. Then it calls tag_list () to return all of our vocabulary tags together. Now we have a way of retrieving our tag
vocabularies and creating them if they do not exist. We just need our plugin to call this code.

Adding tags to the schema

Update _modify_package_schema() and show_package_schema ()

def _modify_package_schema(self, schema: Schema):
schema.update ({
'custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]
b
schema.update ({
'country_code': [
tk.get_validator('ignore_missing'),
cast(ValidatorFactory,
tk.get_converter('convert_to_tags')) ('country_codes'),
1
b

return schema

def show_package_schema(self) -> Schema:
schema: Any = super(
ExampleIDatasetFormPlugin, self).show_package_schema()
schema.update ({
'custom_text': [tk.get_converter('convert_from_extras'),
tk.get_validator('ignore_missing')]

D)

schema['tags']['__extras'].append(tk.get_converter('free_tags_only'))
schema.update ({
'country_code': [
cast(ValidatorFactory,
tk.get_converter('convert_from_tags')) ('country_codes'),
(continues on next page)

5.6. Customizing dataset and resource metadata fields using IDatasetForm 265

CKAN documentation, Release 2.11.0a0

(continued from previous page)
tk.get_validator('ignore_missing')]

D)

return schema

We are adding our tag to our plugin’s schema. A converter is required to convert the field in to our tag in a similar way
to how we converted our field to extras earlier. In show_package_schema () we convert from the tag back again but
we have an additional line with another converter containing free_tags_only (). We include this line so that vocab
tags are not shown mixed with normal free tags.

Adding tags to templates

Add an additional plugin.implements line to to your plugin to implement the ITemplateHelpers, we will need to add
a get_helpers () function defined for this interface.

p.implements(p.ITemplateHelpers)

def get_helpers(self):
return {'country_codes': country_codes}

Our intention here is to tie our country_code fetching/creation to when they are used in the templates. Add the code
below to package/snippets/package_metadata_fields.html

#}
{% block package_metadata_fields %}

<div class="control-group'">
<label class="form-label" for="field-country_code">{{ _("Country Code") }}</label>
<div class="controls">
<select id="field-country_code" name="country_code" data-module="autocomplete">
{% for country_code in h.country_codes() %}
<option value="{{ country_code }}" {% if country_code in data.get('country_code
<", [1) %}selected="selected"{% endif %}>{{ country_code }}</option>
{% endfor %}
</select>
</div>
</div>

{{ super() }}

{% endblock %}

This adds our country code to our template, here we are using the additional helper country_codes that we defined in
our get_helpers function in our plugin.

266 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

5.6.4 Adding custom fields to resources

In order to customize the fields in a resource the schema for resources needs to be modified in a similar way to the
datasets. The resource schema is nested in the dataset dict as package| ‘resources’]. We modify this dict in a similar
way to the dataset schema. Change _modify_package_schema to the following.

def _modify_package_schema(self, schema: Schema):
Add our custom country_code metadata field to the schema.

schema.update ({
'country_code': [
tk.get_validator('ignore_missing'),
cast(
ValidatorFactory,
tk.get_converter('convert_to_tags')) ('country_codes')]
b
Add our custom_test metadata field to the schema, this one will use
convert_to_extras instead of convert_to_tags.
schema.update ({
'custom_text': [tk.get_validator('ignore_missing'),
tk.get_converter('convert_to_extras')]
b
Add our custom_resource_text metadata field to the schema
cast(Schema, schemal'resources']).update({
'custom_resource_text' : [tk.get_validator('ignore_missing')]
b

return schema

Update show_package_schema () similarly

def show_package_schema(self) -> Schema:
schema: Schema = super(
ExampleIDatasetFormPlugin, self).show_package_schema()

Don't show vocab tags mixed in with normal 'free' tags
(e.g. on dataset pages, or on the search page)
_extras = cast("list[Validator]",

cast(Schema, schemal'tags'])['__extras'])
_extras.append(tk.get_converter (' free_tags_only'))

Add our custom country_code metadata field to the schema.
schema.update ({
'country_code': [
cast(
ValidatorFactory,
tk.get_converter('convert_from_tags')) ('country_codes'),
tk.get_validator('ignore_missing')]

D)

Add our custom_text field to the dataset schema.
schema.update ({
'custom_text': [tk.get_converter('convert_from_extras'),
tk.get_validator('ignore_missing')]

D)

(continues on next page)

5.6. Customizing dataset and resource metadata fields using IDatasetForm 267

CKAN documentation, Release 2.11.0a0

(continued from previous page)

cast(Schema, schemal['resources']).update({
'custom_resource_text' : [tk.get_validator('ignore_missing') 1]

D

return schema

Add the code below to package/snippets/resource_form.html

{% ckan_extends %}

{% block basic_fields_url %}
{{ super(O }}

{{ form.input('custom_resource_text', label=_("'Custom Text'), id='field-custom_
—resource_text', placeholder=_('custom resource text'), value=data.custom_resource_text,
<, error=errors.custom_resource_text, classes=['control-medium']) }}

{% endblock %}

This adds our custom_resource_text to the editing form of the resources.

Save and reload your development server CKAN will take any additional keys from the resource schema and save them
the its extras field. The templates will automatically check this field and display them in the resource_read page.

5.6.5 Sorting by custom fields on the dataset search page

Now that we’ve added our custom field, we can customize the CKAN web front end search page to sort datasets by
our custom field. Add a new file called ckanext-extrafields/ckanext/extrafields/templates/package/
search.html containing:

{% ckan_extends %}

{% block form %}
{% set facets = {
'fields': fields_grouped,
'search': search_facets,
"titles': facet_titles,
'translated_fields': translated_fields,
'remove_field': remove_field }
%}
{% set sorting = [
(_('Relevance'), 'score desc, metadata_modified desc'),
(_('Name Ascending'), 'title_string asc'),
(_('Name Descending'), 'title_string desc'),
(_('Last Modified'), 'metadata_modified desc'),
(
((
]

N

L

'Custom Field Ascending'), 'custom_text asc'),
Custom Field Descending'), 'custom_text desc')

%}

{% snippet 'snippets/search_form.html', type='dataset', query=q, sorting=sorting,.
—sorting_selected=sort_by_selected, count=page.item_count, facets=facets, show_
—empty=request.args, error=query_error %}

{% endblock %}

268 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

This overrides the search ordering drop down code block, the code is the same as the default dataset search block but
we are adding two additional lines that define the display name of that search ordering (e.g. Custom Field Ascending)
and the SOLR sort ordering (e.g. custom_text asc). If you reload your development server you should be able to see
these two additional sorting options on the dataset search page.

The SOLR sort ordering can define arbitrary functions for custom sorting, but this is beyond the scope of this tuto-
rial for further details see http://wiki.apache.org/solr/CommonQueryParameters#sort and http://wiki.apache.org/solr/
FunctionQuery

You can find the complete source for this tutorial at https://github.com/ckan/ckan/tree/master/ckanext/example_
idatasetform

5.7 Plugin interfaces reference

ckan.plugins contains a few core classes and functions for plugins to use:

ckan.plugins

class ckan.plugins.SingletonPlugin(*args, **kwargs)
Base class for plugins which are singletons (ie most of them)

One singleton instance of this class will be created when the plugin is loaded. Subsequent calls to the class
constructor will always return the same singleton instance.

class ckan.plugins.Plugin(*args, **kwargs)

Base class for plugins which require multiple instances.
Unless you need multiple instances of your plugin object you should probably use SingletonPlugin.

ckan.plugins.implements (interface, inherit=None, namespace=None, service=False)

Can be used in the class definition of Plugin subclasses to declare the extension points that are implemented by
this interface class.

ckan.plugins.interfaces

A collection of interfaces that CKAN plugins can implement to customize and extend CKAN.

class ckan.plugins.interfaces.Interface
Base class for custom interfaces.

Marker base class for extension point interfaces. This class is not intended to be instantiated. Instead, the
declaration of subclasses of Interface are recorded, and these classes are used to define extension points.

classmethod provided_by (instance: SingletonPlugin) — bool
Check that the object is an instance of the class that implements the interface.

classmethod implemented_by (other: Type['SingletonPlugin']) — bool
Check whether the class implements the current interface.
class ckan.plugins.interfaces.IMiddleware
Hook into the CKAN middleware stack

Note that methods on this interface will be called two times, one for the Pylons stack and one for the Flask stack
(eventually there will be only the Flask stack).

5.7. Plugin interfaces reference 269

http://wiki.apache.org/solr/CommonQueryParameters#sort
http://wiki.apache.org/solr/FunctionQuery
http://wiki.apache.org/solr/FunctionQuery
https://github.com/ckan/ckan/tree/master/ckanext/example_idatasetform
https://github.com/ckan/ckan/tree/master/ckanext/example_idatasetform

CKAN documentation, Release 2.11.0a0

make_middleware (app: CKANApp, config: CKANConfig) — CKANApp

Return an app configured with this middleware

When called on the Flask stack, this method will get the actual Flask app so plugins wanting to install Flask
extensions can do it like this:

import ckan.plugins as p
from flask_mail import Mail

class MyPlugin(p.SingletonPlugin):
p.implements(p.IMiddleware)
def make_middleware(app, config):

mail = Mail (app)

return app

make_error_log_middleware (app: CKANFlask, config: CKANConfig) — CKANFlask

Return an app configured with this error log middleware

Note that both on the Flask and Pylons middleware stacks, this method will receive a wrapped WSGI app,
not the actual Flask or Pylons app.

class ckan.plugins.interfaces.IAuthFunctions

Override CKAN’s authorization functions, or add new auth functions.

get_auth_functions() — dict[str, AuthFunction]
Return the authorization functions provided by this plugin.

Return a dictionary mapping authorization function names (strings) to functions. For example:

{'user_create': my_custom_user_create_function,
'group_create': my_custom_group_create}

When a user tries to carry out an action via the CKAN API or web interface and CKAN or a CKAN plugin
calls check_access('some_action') as aresult, an authorization function named ' some_action' will
be searched for in the authorization functions registered by plugins and in CKAN’s core authorization
functions (found in ckan/logic/auth/).

For example when action function 'package_create’ is called, a 'package_create' authorization
function is searched for.

If an extension registers an authorization function with the same name as one of CKAN’s default autho-
rization functions (as with 'user_create' and 'group_create' above), the extension’s function will
override the default one.

Each authorization function should take two parameters context and data_dict, and should return a dic-
tionary {'success': True} to authorize the action or {'success': False} to deny it, for example:

def user_create(context, data_dict=None):
if (some condition):
return {'success': True}
else:
return {'success': False, 'msg': 'Not allowed to register'}

270 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

The context object will contain a model that can be used to query the database, a user containing the
name of the user doing the request (or their IP if it is an anonymous web request) and an auth_user_obj
containing the actual model.User object (or None if it is an anonymous request).

See ckan/logic/auth/ for more examples.

Note that by default, all auth functions provided by extensions are assumed to require a validated user or API
key, otherwise a ckan.logic.NotAuthorized: exception will be raised. This check will be performed
before calling the actual auth function. If you want to allow anonymous access to one of your actions, its
auth function must be decorated with the auth_allow_anonymous_access decorator, available in the
plugins toolkit.

For example:

import ckan.plugins as p

@p.toolkit.auth_allow_anonymous_access

def my_search_action(context, data_dict):
Note that you can still return {'success': False} if for some
reason access is denied.

def my_create_action(context, data_dict):
Unless there is a logged in user or a valid API key provided
NotAuthorized will be raised before reaching this function.

By decorating a registered auth function with the ckan.plugins.toolkit.chained_auth_function
decorator you can create a chain of auth checks that are completed when auth is requested. This chain
starts with the last chained auth function to be registered and ends with the original auth function (or a
non-chained plugin override version). Chained auth functions must accept an extra parameter, specifically
the next auth function in the chain, for example:

[auth_function (next_auth, context, data_dict). J

The chained auth function may call the next_auth function, optionally passing different values, handling
exceptions, returning different values and/or raising different exceptions to the caller.

class ckan.plugins.interfaces.IDomainObjectModification

Receives notification of new, changed and deleted datasets.

notify(entity: Any, operation: str) — None

Send a notification on entity modification.
Parameters
e entity - instance of module.Package.
¢ operation — ‘new’, ‘changed’ or ‘deleted’.

notify_after_commit (entity: Any, operation: Any) — None
** DEPRECATED **

Supposed to send a notification after entity modification, but it doesn’t work.
Parameters
e entity - instance of module.Package.

e operation — ‘new’, ‘changed’ or ‘deleted’.

5.7. Plugin interfaces reference 271

CKAN documentation, Release 2.11.0a0

class ckan.plugins.interfaces.IFeed

For extending the default Atom feeds

get_feed_class() — PFeedFactory

Allows plugins to provide a custom class to generate feed items.

Returns
feed class
Return type
type
The feed item generator’s constructor is called as follows:
feed_class(
feed_title, # Mandatory
feed_link, # Mandatory
feed_description, # Mandatory
language, # Optional, always set to 'en'
author_name, # Optional
author_link, # Optional
feed_guid, # Optional
feed_url, # Optional
previous_page, # Optional, url of previous page of feed
next_page, # Optional, url of next page of feed
first_page, # Optional, url of first page of feed
last_page, # Optional, url of last page of feed
)

get_item_additional_fields(dataset_dict: dictstr, Any]) — dict[str, Any]
Allows plugins to set additional fields on a feed item.

Parameters
dataset_dict (dictionary) — the dataset metadata

Returns
the fields to set

Return type
dictionary
class ckan.plugins.interfaces.IGroupController

Hook into the Group view. These methods will usually be called just before committing or returning the respective
object i.e. when all validation, synchronization and authorization setup are complete.

read (entity: model.Group) — None

Called after IGroupController.before_view inside group_read.
create (entity: model. Group) — None

Called after group has been created inside group_create.
edit (entity: model. Group) — None

Called after group has been updated inside group_update.

delete(entity: model.Group) — None

Called before commit inside group_delete.

272 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

before_view(data_dict: dict[str, Any]) — dict[str, Any]
Extensions will receive this before the group gets displayed. The dictionary passed will be the one that gets
sent to the template.

class ckan.plugins.interfaces.IOrganizationController

Hook into the Organization view. These methods will usually be called just before committing or returning the

respective object i.e. when all validation, synchronization and authorization setup are complete.

read (entity: model.Group) — None
Called after IOrganizationController.before_view inside organization_read.

create (entity: model.Group) — None
Called after organization had been created inside organization_create.

edit (entity: model. Group) — None
Called after organization had been updated inside organization_update.

delete(entity: model.Group) — None
Called before commit inside organization_delete.

before_view(data_dict: dict[str, Any]) — dict[str, Any]
Extensions will receive this before the organization gets displayed. The dictionary passed will be the one
that gets sent to the template.
class ckan.plugins.interfaces.IPackageController

Hook into the dataset view.

read (entity: model.Package) — None
Called after [PackageController.before_dataset_view inside package_show.

create(entity: model. Package) — None
Called after the dataset had been created inside package_create.

edit (entity: model. Package) — None
Called after the dataset had been updated inside package_update.

delete (entity: model.Package) — None
Called before commit inside package_delete.

after_dataset_create(context: Context, pkg_dict: dict[str, Any]) — None
Extensions will receive the validated data dict after the dataset has been created (Note that the create method
will return a dataset domain object, which may not include all fields). Also the newly created dataset id
will be added to the dict.
after_dataset_update(context: Context, pkg_dict: dict[str, Any]) — None
Extensions will receive the validated data dict after the dataset has been updated.
Note that bulk dataset update actions (bulk_update_private, bulk_update_public) will bypass this callback.
See ckan.plugins.toolkit.chained_action to wrap those actions if required.
after_dataset_delete(context: Context, pkg_dict: dict[str, Any]) — None
Extensions will receive the data dict (typically containing just the dataset id) after the dataset has been
deleted.

Note that the bulk_update_delete action will bypass this callback. See ckan.plugins.toolkit.
chained_action to wrap that action if required.

5.7. Plugin interfaces reference 273

CKAN documentation, Release 2.11.0a0

after_dataset_show(context: Context, pkg_dict: dict[str, Any]) — None

Extensions will receive the validated data dict after the dataset is ready for display.

before_dataset_search(search_params: dict[str, Any]) — dict[str, Any]
Extensions will receive a dictionary with the query parameters, and should return a modified (or not) version
of it.

search_params will include an extras dictionary with all values from fields starting with exz_, so extensions
can receive user input from specific fields.
after_dataset_search(search_results: dict[str, Any], search_params: dict[str, Any]) — dict[str, Any]

Extensions will receive the search results, as well as the search parameters, and should return a modified
(or not) object with the same structure:

[{'count' : "', 'results': , 'search_facets': ''}

Note that count and facets may need to be adjusted if the extension changed the results for some reason.

search_params will include an extras dictionary with all values from fields starting with ext_, so extensions
can receive user input from specific fields.

before_dataset_index (pkg_dict: dict[str, Any]) — dict[str, Any]
Extensions will receive what will be given to Solr for indexing. This is essentially a flattened dict (except
for multi-valued fields such as tags) of all the terms sent to the indexer. The extension can modify this by
returning an altered version.

before_dataset_view(pkg_dict: dict[str, Any]) — dict[str, Any]

Extensions will receive this before the dataset gets displayed. The dictionary passed will be the one that
gets sent to the template.

class ckan.plugins.interfaces.IPluginObserver
Hook into the plugin loading mechanism itself
before_load(plugin: SingletonPlugin) — None
Called before a plugin is loaded. This method is passed the plugin class.
after_load(service: Any) — None
Called after a plugin has been loaded. This method is passed the instantiated service object.
before_unload (plugin: SingletonPlugin) — None
Called before a plugin is loaded. This method is passed the plugin class.

after_unload(service: Any) — None

Called after a plugin has been unloaded. This method is passed the instantiated service object.

class ckan.plugins.interfaces.IConfigurable
Hook called during the startup of CKAN

See also IConfigurer.

configure (config: CKANConfig) — None
Called during CKAN’s initialization.

This function allows plugins to initialize themselves during CKAN’s initialization. It is called after most
of the environment (e.g. the database) is already set up.

Note that this function is not only called during the initialization of the main CKAN process but also
during the execution of paster commands and background jobs, since these run in separate processes and
are therefore initialized independently.

274 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

Parameters
config (ckan.common.CKANConfig) — dict-like configuration object

class ckan.plugins.interfaces.IConfigDeclaration
Register additional configuration options.

While it’s not necessary, declared config options can be printed out using CLI or additionally verified in code.
This makes the task of adding new configuration, removing obsolete config options, checking the sanity of config
options much simpler for extension consumers.

declare_config_options(declaration: Declaration, key: Key)

Register extra config options.

Example:

from ckan.config.declaration import Declaration, Key

def declare_config_options(
self, declaration: Declaration, key: Key):

declaration.annotate("MyExt config section')

group = key.ckanext.my_ext.feature

declaration.declare(group.enabled, "no").set_description(
"Enables feature"

)

declaration.declare(group.mode, "simple").set_description(
"Execution mode"

)

Run ckan config declaration my_ext --include-docs and get the following config suggestion:

MyExt config section ###H#H#HHHHAARAA#HHHHHHH
Enables feature
ckanext.my_ext.feature.enabled = no

Execution mode

ckanext.my_ext.feature.mode = simple

See declare configuration guide for details.
Parameters

* declaration (ckan.config.declaration.Declaration) — object containing all the
config declarations

* key (ckan.config.declaration.Key) — object for generic option access.
class ckan.plugins.interfaces.IConfigurer
Configure the CKAN environment via the config object
See also IConfigurable.

update_config(config: CKANConfig) — None

Called by load_environment at the earliest point that config is available to plugins. The config should be
updated in place.

Parameters
config — config object

5.7. Plugin interfaces reference 275

CKAN documentation, Release 2.11.0a0

update_config_schema(schema: Schema) — Schema

Return a schema with the runtime-editable config options.

CKAN will use the returned schema to decide which configuration options can be edited during runtime
(using ckan.logic.action.update.config_option_update()) and to validate them before storing
them.

Defaults to ckan.logic.schema.default_update_configuration_schema(), which will be passed
to all extensions implementing this method, which can add or remove runtime-editable config options to it.

Parameters
schema (dictionary) — a dictionary mapping runtime-editable configuration option keys to
lists of validator and converter functions to be applied to those keys

Returns
a dictionary mapping runtime-editable configuration option keys to lists of validator and con-
verter functions to be applied to those keys

Return type
dictionary

class ckan.plugins.interfaces.IActions

Allow adding of actions to the logic layer.

get_actions() — dict[str, Callable[[Context, dict[str, Any]], Any]]

Should return a dict, the keys being the name of the logic function and the values being the functions
themselves.

By decorating a function with the ckan.logic.side_effect_£free decorator, the associated action will
be made available to a GET request (as well as the usual POST request) through the Action API.

By decorating a function with ckan.plugins.toolkit.chained_action, the action will ‘intercept’
calls to an existing action function. This allows a plugin to modify the behaviour of an existing ac-
tion function. Chained actions must be defined as action_function(original_action, context,
data_dict), where the function’s name matches the original action function it intercepts, the first param-
eter is the action function it intercepts (in the next plugin or in core ckan). The chained action may call
the original_action function, optionally passing different values, handling exceptions, returning different
values and/or raising different exceptions to the caller. When multiple plugins chain to an action, the first
plugin declaring is called first, and if it chooses to call the original_action, then the chained action in the
next plugin to be declared next is called, and so on.

class ckan.plugins.interfaces.IResourceUrlChange

Receives notification of changed URL on a resource.

notify (resource: model.Resource) — None

Called when a resource url has changed.

:param resource, instance of model.Resource

class ckan.plugins.interfaces.IDatasetForm

Customize CKAN’s dataset (package) schemas and forms.

By implementing this interface plugins can customise CKAN’s dataset schema, for example to add new custom
fields to datasets.

Multiple IDatasetForm plugins can be used at once, each plugin associating itself with different dataset types
using the package_types() and is_fallback() methods below, and then providing different schemas and
templates for different types of dataset. When a dataset view action is invoked, the type field of the dataset will
determine which IDatasetForm plugin (if any) gets delegated to.

276

Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

When implementing IDatasetForm, you can inherit from ckan.plugins.toolkit.DefaultDatasetForm,
which provides default implementations for each of the methods defined in this interface.

See ckanext/example_idatasetform for an example plugin.

package_types() — Sequence[str]
Return an iterable of dataset (package) types that this plugin handles.

If a request involving a dataset of one of the returned types is made, then this plugin instance will be
delegated to.

There cannot be two IDatasetForm plugins that return the same dataset type, if this happens then CKAN
will raise an exception at startup.

Return type
iterable of strings
is_fallback() — bool
Return True if this plugin is the fallback plugin.

When no IDatasetForm plugin’s package_types() match the type of the dataset being processed, the
fallback plugin is delegated to instead.

There cannot be more than one [DatasetForm plugin whose is_fallback() method returns True, if this
happens CKAN will raise an exception at startup.

If no IDatasetForm plugin’s is_fallback() method returns True, CKAN will use
DefaultDatasetForm as the fallback.

Return type
bool
create_package_schema() — Schema
Return the schema for validating new dataset dicts.

CKAN will use the returned schema to validate and convert data coming from users (via the dataset form
or API) when creating new datasets, before entering that data into the database.

If it inherits from ckan.plugins.toolkit.DefaultDatasetForm, a plugin can call
DefaultDatasetForm’s create_package_schema() method to get the default schema and then
modify and return it.

CKAN'’s convert_to_tags() or convert_to_extras() functions can be used to convert custom fields
into dataset tags or extras for storing in the database.

See ckanext/example_idatasetform for examples.

Returns
a dictionary mapping dataset dict keys to lists of validator and converter functions to be ap-
plied to those keys

Return type
dictionary
update_package_schema() — Schema
Return the schema for validating updated dataset dicts.

CKAN will use the returned schema to validate and convert data coming from users (via the dataset form
or API) when updating datasets, before entering that data into the database.

If it inherits from ckan.plugins.toolkit.DefaultDatasetForm, a plugin can call
DefaultDatasetForm’s update_package_schema() method to get the default schema and then
modify and return it.

5.7. Plugin interfaces reference 277

CKAN documentation, Release 2.11.0a0

CKAN’s convert_to_tags() or convert_to_extras() functions can be used to convert custom fields
into dataset tags or extras for storing in the database.

See ckanext/example_idatasetform for examples.

Returns
a dictionary mapping dataset dict keys to lists of validator and converter functions to be ap-
plied to those keys

Return type
dictionary

show_package_schema() — Schema

Return a schema to validate datasets before they’re shown to the user.

CKAN will use the returned schema to validate and convert data coming from the database before it is
returned to the user via the API or passed to a template for rendering.

If it inherits from ckan.plugins.toolkit.DefaultDatasetForm, a plugin can call
DefaultDatasetForm’s show_package_schema() method to get the default schema and then
modify and return it.

If you have used convert_to_tags() or convert_to_extras() in your create_package_schema()
and update_package_schema() then you should wuse convert_from_tags() or
convert_from_extras() in your show_package_schema() to convert the tags or extras in the
database back into your custom dataset fields.

See ckanext/example_idatasetform for examples.

Returns
a dictionary mapping dataset dict keys to lists of validator and converter functions to be ap-
plied to those keys

Return type
dictionary

setup_template_variables(context: Context, data_dict: dict(str, Any]) — None

Add variables to the template context for use in dataset templates.

This function is called before a dataset template is rendered. If you have custom dataset templates that
require some additional variables, you can add them to the template context ckan.plugins.toolkit.c
here and they will be available in your templates. See ckanext/example_idatasetform for an example.

new_template (package_type: str) — str

Return the path to the template for the new dataset page.
The path should be relative to the plugin’s templates dir, e.g. 'package/new.html’.

Return type
string

read_template (package_type: str) — str

Return the path to the template for the dataset read page.
The path should be relative to the plugin’s templates dir, e.g. 'package/read.html’.

If the user requests the dataset in a format other than HTML, then CKAN will try to render a template file
with the same path as returned by this function, but a different filename extension, e.g. 'package/read.
rdf’. If your extension (or another one) does not provide this version of the template file, the user will get
a 404 error.

Return type
string

278

Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

edit_template(package_type: str) — str
Return the path to the template for the dataset edit page.

The path should be relative to the plugin’s templates dir, e.g. 'package/edit.html'.

Return type
string

search_template (package_type: str) — str

Return the path to the template for use in the dataset search page.
This template is used to render each dataset that is listed in the search results on the dataset search page.
The path should be relative to the plugin’s templates dir, e.g. 'package/search.html’.

Return type
string

history_template(package_type: str) — str

Warning: This template is removed. The function exists for compatibility. It now returns None.

resource_template (package_type: str) — str

Return the path to the template for the resource read page.
The path should be relative to the plugin’s templates dir, e.g. 'package/resource_read.html'.

Return type
string
package_form(package_type: str) — str
Return the path to the template for the dataset form.

The path should be relative to the plugin’s templates dir, e.g. 'package/form.html’.

Return type
string

resource_form(package_type: str) — str
Return the path to the template for the resource form.

The path should be relative to the plugin’s templates dir, e.g. 'package/snippets/resource_form.
html'

Return type
string

validate(context: Context, data_dict: DataDict, schema: Schema, action: str) — tuple[dict[str, Any],
dict[str, Any]] | None

Customize validation of datasets.

When this method is implemented it is used to perform all validation for these datasets. The default imple-
mentation calls and returns the result from ckan.plugins.toolkit.navl_validate.

This is an adavanced interface. =~ Most changes to validation should be accomplished by cus-
tomizing the schemas returned from show_package_schema(), create_package_schema() and
update_package_schema(). If you need to have a different schema depending on the user or value
of any field stored in the dataset, or if you wish to use a different method for validation, then this method
may be used.

5.7.

Plugin interfaces reference 279

CKAN documentation, Release 2.11.0a0

Parameters
* context (dictionary) — extra information about the request
e data_dict (dictionary) — the dataset to be validated

e schema (dictionary) — a schema, typically from show_package_schema(),
create_package_schema() or update_package_schema()

e action (string) - 'package_show', 'package_create' or 'package_update’

Returns
(data_dict, errors) where data_dict is the possibly-modified dataset and errors is a dictionary
with keys matching data_dict and lists-of-string-error-messages as values

Return type
(dictionary, dictionary)
prepare_dataset_blueprint (package_type: str, blueprint: Blueprint) — Blueprint
Update or replace dataset blueprint for given package type.
Internally CKAN registers blueprint for every custom dataset type. Before default routes added to this
blueprint and it registered inside application this method is called. It can be used either for registration of

the view function under new path or under existing path(like /new), in which case this new function will be
used instead of default one.

Note, this blueprint has prefix /{package_type).

Return type
flask.Blueprint

prepare_resource_blueprint (package_type: str, blueprint: Blueprint) — Blueprint
Update or replace resource blueprint for given package type.

Internally CKAN registers separate resource blueprint for every custom dataset type. Before default routes
added to this blueprint and it registered inside application this method is called. It can be used either for
registration of the view function under new path or under existing path(like /new), in which case this new
function will be used instead of default one.

Note, this blueprint has prefix /{package_type}/<id>/resource.

Return type
flask.Blueprint

class ckan.plugins.interfaces.IValidators
Add extra validators to be returned by ckan.plugins.toolkit.get_validator().

get_validators() — dict[str, Validator]

Return the validator functions provided by this plugin.

Return a dictionary mapping validator names (strings) to validator functions. For example:

{'valid_shoe_size': shoe_size_validator,
'valid_hair_color': hair_color_validator}

These validator functions would then be available when a plugin calls ckan.plugins.toolkit.
get_validator().

class ckan.plugins.interfaces.IResourceView

Add custom view renderings for different resource types.

280 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

info () — dict[str, Any]
Returns a dictionary with configuration options for the view.
The available keys are:
Parameters

* name — name of the view type. This should match the name of the actual plugin (eg
image_view or datatables_view).

e title —title of the view type. Will be displayed on the frontend. This should be translat-
able (ie wrapped with toolkit._('Title")).

e default_title — default title that will be used if the view is created automatically (op-
tional, defaults to ‘View’).

* default_description — default description that will be used if the view is created auto-
matically (optional, defaults to **).

¢ icon - icon for the view type. Should be one of the Font Awesome types without the fa
fa- prefix eg. compass (optional, defaults to ‘picture’).

* always_available - the view type should be always available when creating new views
regardless of the format of the resource (optional, defaults to False).

¢ iframed - the view template should be iframed before rendering. You generally want this
option to be True unless the view styles and JavaScript don’t clash with the main site theme
(optional, defaults to True).

* preview_enabled - the preview button should appear on the edit view form. Some view
types have their previews integrated with the form (optional, defaults to False).

e full_page_edit - the edit form should take the full page width of the page (optional,
defaults to False).

 schema - schema to validate extra configuration fields for the view (optional). Schemas are
defined as a dictionary, with the keys being the field name and the values a list of validator
functions that will get applied to the field. For instance:

{
'offset': [ignore_empty, natural_number_validator],
'"limit': [ignore_empty, natural_number_validator],

}

Example configuration object:

{'name': 'image_view',

'title': toolkit._('Image'),

'schema’': {

"image_url': [ignore_empty, unicode]

3,

'icon': 'image',

'always_available': True,

'iframed': False,

¥

Returns
a dictionary with the view type configuration

5.7. Plugin interfaces reference 281

https://fontawesome.com/search

CKAN documentation, Release 2.11.0a0

Return type
dict

can_view(data_dict: dict[str, Any]) — bool
Returns whether the plugin can render a particular resource.
The data_dict contains the following keys:
Parameters
» resource — dict of the resource fields
» package — dict of the full parent dataset

Returns
True if the plugin can render a particular resource, False otherwise

Return type
bool

setup_template_variables(context: Context, data_dict: dict[str, Any]) — dict[str, Any]
Adds variables to be passed to the template being rendered.

This should return a new dict instead of updating the input data_dict.
The data_dict contains the following keys:
Parameters
* resource_view — dict of the resource view being rendered
» resource — dict of the parent resource fields
¢ package — dict of the full parent dataset

Returns
a dictionary with the extra variables to pass

Return type
dict

view_template(context: Context, data_dict: dict[str, Any]) — str

Returns a string representing the location of the template to be rendered when the view is displayed

The path will be relative to the template directory you registered using the add_template_directory()
on the update_config method, for instance views/my_view.html.

Parameters
» resource_view — dict of the resource view being rendered
» resource — dict of the parent resource fields
¢ package — dict of the full parent dataset

Returns
the location of the view template.

Return type
string

form_template (context: Context, data_dict: dict[str, Any]) — str
Returns a string representing the location of the template to be rendered when the edit view form is displayed

The path will be relative to the template directory you registered using the add_template_directory()
on the update_config method, for instance views/my_view_form.html.

282 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

Parameters
* resource_view — dict of the resource view being rendered
» resource — dict of the parent resource fields
» package — dict of the full parent dataset

Returns
the location of the edit view form template.

Return type
string

class ckan.plugins.interfaces.IResourceController

Hook into the resource view.

before_resource_create(context: Context, resource: dict[str, Any]) — None

Extensions will receive this before a resource is created.
Parameters

» context (dictionary) — The context object of the current request, this includes for ex-
ample access to the model and the user.

» resource (dictionary)— An object representing the resource to be added to the dataset
(the one that is about to be created).

after_resource_create(context: Context, resource: dict[str, Any]) — None
Extensions will receive this after a resource is created.

Parameters

» context (dictionary) — The context object of the current request, this includes for ex-
ample access to the model and the user.

* resource (dictionary)— An object representing the latest resource added to the dataset
(the one that was just created). A key in the resource dictionary worth mentioning is
url_type which is set to upload when the resource file is uploaded instead of linked.

before_resource_update (context: Context, current: dict[str, Any], resource: dict[str, Any]) — None

Extensions will receive this before a resource is updated.
Parameters

» context (dictionary) — The context object of the current request, this includes for ex-
ample access to the model and the user.

e current (dictionary) — The current resource which is about to be updated

» resource (dictionary)— An object representing the updated resource which will replace
the current one.

after_resource_update (context: Context, resource: dict(str, Any]) — None

Extensions will receive this after a resource is updated.
Parameters

» context (dictionary) — The context object of the current request, this includes for ex-
ample access to the model and the user.

» resource (dictionary)— An object representing the updated resource in the dataset (the
one that was just updated). As with after_resource_create, a noteworthy key in the

5.7. Plugin interfaces reference 283

CKAN documentation, Release 2.11.0a0

resource dictionary url_type which is set to upload when the resource file is uploaded
instead of linked.

Note that the datastore will bypass this callback when updating the datastore_active flag on a resource
that has been added to the datastore.

before_resource_delete(context: Context, resource: dict[str, Any], resources: list[dict[str, Any]]) —
None

Extensions will receive this before a resource is deleted.
Parameters

» context (dictionary) — The context object of the current request, this includes for ex-
ample access to the model and the user.

* resource (dictionary)— An object representing the resource that is about to be deleted.
This is a dictionary with one key: id which holds the id string of the resource that should
be deleted.

e resources (1ist)— The list of resources from which the resource will be deleted (includ-
ing the resource to be deleted if it existed in the dataset).

after_resource_delete(context: Context, resources: list[dict[str, Any]]) — None

Extensions will receive this after a resource is deleted.
Parameters

» context (dictionary) — The context object of the current request, this includes for ex-
ample access to the model and the user.

» resources — A list of objects representing the remaining resources after a resource has
been removed.

before_resource_show (resource_dict: dict[str, Any]) — dict[str, Any]

Extensions will receive the validated data dict before the resource is ready for display.

Be aware that this method is not only called for UI display, but also in other methods, like when a resource
is deleted, because package_show is used to get access to the resources in a dataset.

class ckan.plugins.interfaces.IGroupForm
Allows customisation of the group form and its underlying schema.

The behaviour of the plugin is determined by 5 method hooks:
* group_form(self)
e form_to_db_schema(self)
¢ db_to_form_schema(self)
* setup_template_variables(self, context, data_dict)

Furthermore, there can be many implementations of this plugin registered at once. With each instance associating
itself with 0 or more group type strings. When a group form action is invoked, the group type determines which
of the registered plugins to delegate to. Each implementation must implement these methods which are used to
determine the group-type -> plugin mapping:

e is_fallback(self)
* group_types(self)

* group_controller(self)

284 Chapter 5. Extending guide

CKAN documentation, Release 2.11.0a0

Implementations might want to consider mixing in ckan.lib.plugins.DefaultGroupForm which provides default
behaviours for the 5 method hooks.

is_fallback() — bool

Returns true if this provides the fallback behaviour, when no other plugin instance matches a group’s type.

There must be exactly one fallback view defined, any attempt to register more than one will throw an
exception at startup. If there’s no fallback registered at startup the ckan.lib.plugins.DefaultGroupForm
used as the fallback.

group_types () — Iterable[str]
Returns an iterable of group type strings.

If a request involving a group of one of those types is made, then this plugin instance will be delegated to.

There must only be one plugin registered to each group type. Any attempts to register more than one plugin
instance to a given group type will raise an exception at startup.

group_controller() — str
Returns the name of the group view

The group view is the view, that is used to handle requests of the group type(s) of this plugin.
If this method is not provided, the default group view is used (group).

new_template(group_type: str) — str
Returns a string representing the location of the template to be rendered for the ‘new’ page. Uses the
default_group_type configuration option to determine which plugin to use the template from.
index_template(group_type: str) — str
Returns a string representing the location of the template to be rendered for the index page. Uses the
default_group_type configuration option to determine which plugin to use the template from.
read_template (group_type: str) — str
Returns a string representing the location of the template to be rendered for the read page

history_template(group_type: str) — str

Returns a string representing the location of the template to be rendered for the history page
edit_template(group_type: str) — str

Returns a string representing the location of the template to be rendered for the edit page

group_form (group_type: str) — str

Returns a string representing the location of the template to be rendered. e.g. group/n